V.G. Oshlakov and Yu.G. Borkov

Vol. 15, No. 7 /July 2002/ Atmos. Oceanic Opt. 575

Numerical analysis of the instrumental matrix
of a polarization meter

V.G. Oshlakov and Yu.G. Borkov

Institute of Atmospheric Optics,
Siberian Branch of the Russian Academy of Sciences, Tomsk

Received January 8, 2002

Optimization of the meter of Stokes vector parameters and 16 elements of the scattering phase
matrix is considered. The measurements are made with maximum possible accuracy in the presence of
errors in the initial data. The meter is simple in controlling the polarization elements. The measurement
accuracy depends on the condition number of the instrumental matrix cond M. Numerical analysis
determines the points, at which cond M is minimum as well as the effect is minimum of the deviation

from them on the cond M magnitude.

The accuracy of measurements by means of a
meter! of Stokes parameters S and an optimal meter2:3
of the scattering phase matrix D of a medium is
determined by the instrumental matrices M and W. The
condition number of the matrix M cond M and that of
the matrix W cond W should be minimum.!=3

Capabilities of computation technique
significantly increased after Ref. 1 was published, that
made it possible to numerically analyze the
instrumental matrices M and W in a more detail. The
results of analysis are presented in this paper. Let us
follow the notations of the parameters I, Q, U, and V
of the Stokes vector S as it was accepted in Refs. 4 and
5. Optical arrangement of the elements comprising the
meter of Stokes parameters is shown in Fig. 1.
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Fig. 1. Measurement of the Stokes vector S using four
positions of the fast axis of the phase shifting plate.

The Stokes vector S, = (I, Q, U, V)T, where T is
the sign of transposition, of a radiation at the output of
the polarization block of a receiver is determined by the
following formula:
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S, =P, P.S, (1)

where P,, and P. are the Mueller matrices of the
polarizer and phase shifting plate, respectively,
S = O U V)T is the Stokes vector of radiation in the
coordinate system of the receiver X, Y.

The signal I, at the output of the photodetector
(taking into account the proportionality coefficient that
is equal to the photocurrent of the sensitive element of
the photodetector) is derived from Eq. (1) in the form

[r:%{[+Q[cos2ocCOS2(0‘_B)+

+ cos 1 sin 2o sin 2(a — B)] + U [sin 2a cos 2(a — B) —
— cos 1t cos 2o sin2 (oo — B)] — V sin 1 sin 2(a — B)}, (2)

where B is the angle of orientation of the transmittance

plane of the polarizer relative to the X-axis of the

coordinate system of the receiver; o is the orientation

angle of the fast axis of the phase shifting plate relative

to the X-axis; t is the phase shift of the orthogonal

components produced by the phase shifting plate.
Formula (2) at B = /2 takes the form

1.9 Q
[rzi[[—?(1+0051)—?(1—COST)C0540‘_

U
D) (1 — cos 1) sin 4o + V sin 1 sin 2a].  (2a)

The functions f; (a) =1 —Q (1 +cos 1) /2, fo (a) =
=[(1 = cos 1) cos 4a] /2, fu (@) = [(1 = cos 1) x
x sin 4] /2, and fy (a) = sint sin2a. belong to the
Chebyshev sequence, because the Wronsky determinant
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(1 —cost)?sint

=[1—%(1—cosr)} n

is not equal to zero at any o value.6

Measuring I, at different o values, we obtain the
system of four linearly independent equations,!2 from
which one can determine S. Let us write equations of
this system in the form

(2048 — 512 cos 2a.)

Ii=75 Myl + MpQ + MisU + My V), i= 1,4, (3)

1

2

where
M =1,

M5 = cos 2a; cos 2(a; — B) + cos T sin 2a; sin 2(a; — B),

M3 = sin 2a; cos 2(a,; — B) — cos T cos 20 sin 2(a; — B),

M = —sin 1 sin 2(a; — B).

The system of equations (3) in the matrix form is
as follows

M S, (4)

N | —

I, =

where I, = U Il 31,07, S=UTQUWT is the
Stokes vector in the coordinate system X, Y; M is the
4><4Ldtrix with the elements M“, Ml’z, Mi3’ Mi47
i=1,4.

The determinant of the matrix M is not equal to
zero at any values of a;, i = 1, 4 , that is characteristic
of the determinant formed by the functions of
Chebyshev sequence.

I, and the elements of the matrix M are called
input data of the problem on determining S.

Equation (2) corresponds to the case of an ideal
polarizer and phase shifting plate with precisely known
a, B, 1, and I,. The Mueller matrices P} and P, of real
phase shifting plate and polarizer are approximately
described by P, and P,, and the parameters o, B, and t
differ from real ones a, B, and T due to measurement
errors. Also I, differs from the accurate I, due to the
errors in [, measured with the meter.

Thus, we cannot determine accurate value of the
Stokes vector S from these system of equations

M S, 5)

where M is the 4x4 matrix with the elements M;q =
= My + AMy, Miy =M+ AMjy, M3 = M3+ AM3,
and My = Mz + AMyq; i =_1, 4 5 I, = I + AL; AMy;
AMjy; AM;3; AMy; i= 1,4 are the errors in
determining the elements M; AI, is the vector of
measurement errors in L.
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Let us denote the solution of Eq. (5) as S, which
is the accurate value of the Stokes vector.

Then we determine the Stokes vector S from
Eq. (4). It differs from S by the error vector AS. Taking
into account the introduced errors, Eq. (5) takes the form

I, + Al = % (M + AM)(S + AS), (6)

where AM = M — M; AS=S-8.

We cannot know the quantity (5) because of the
errors, and we can only solve Eq. (4). It is very important
that Eq. (4) has a solution at any o;, 1= 1,4, 1, B,
and the errors AM and AI, can be estimated.
Theoretically, decreasing the errors to any small value
by increasing the accuracy of measurement of o, B, T and
improving the technology of manufacturing phase
shifting plates and polarizers approaching to the ideal
ones, one can make the system (5) to approach to the
system of equations (4). The quantities S and I, are the
four-dimensional vectors of real arithmetic Euclidean space.

Then, at HAMH HM‘1 H <1 (condition of smallness
of the errors) the following relationship is true’:

||ASHS cond M ( ||AM||+ ||AIr||) NG
Isli Lam [\ llall |
1 = cond M—HW
where ||. .. [l is the sign of the norm of the vector

(matrix), cond M = HMH HM*H is the condition
number of the matrix M. The choice of that or another
specific norm in practice is determined by the
requirements to the accuracy of solution. The choice of
the Euclidean norm

|AS ]y = (AI2 + AQ2 + AU2 + AV2)

corresponds to the criterion of smallness of the rms
error. The Euclidean space, to which S and I, belong, is
full, so when selecting any norm, the decrease of || AS ||
leads to the increase of the accuracy of determination of
S. The system (4) for the optimal meter should be well
conditioned, that means that its solution should be
weakly sensitive to the errors or uncertainties in the
input data.

As follows from Eq. (7) the relative disturbances

M = HAMH, = HAIrH are summed linearly, hence,
| M Ll
las]]

the minimum &S = is provided at minimum &M,

NI
8I;, and cond M.

Thus, the condition number should be minimum
for the optimal meter, the parameters 1, a, and B are
measured with high accuracy, and the Mueller matrices
of the polarization elements weakly differ from the
Mueller matrices of the ideal polarization elements.

Optical arrangement of the elements of the
optimal meter of the scattering phase matrix is shown
in Fig. 2.
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Fig. 2. Optimal meter of the scattering phase matrix.

The scattering phase matrices D relate the Stokes
vector of the radiation of a source Sq = (I; Qs Ug V)T
and the Stokes vector of the scattered radiation
S=U QU WV)T incident on the detector by the
following relationship:

S=DS. (8)

To determine 16 elements of the scattering phase
matrix, 16 independent equations are enough, and, if
taking into account that every type of polarization of
the source radiation contains 4 Stokes parameters, then
it is enough for the source to produce 4 types of
polarization.2:3 Let us write this system in the form

Sj=DSy.j= 1,4. (9)

Let us form the matrix of the parameters Sy,

[s1 Qs1 Us1 Vs1
152 Q52 Us2 Vs2
W= . (10)
I3 Os3 Ug Vi3
154 Qs4 Us4 Vs4

Then let us group the system (9) in four systems,
each of which determines the row of the matrix D:

WDy =1Iy; WDy =Qy; W D3=Uy; WDy =Vyy, (11)
where
D, = (Dyyg Dy Dy Dyy), m= 1, 4
is the mth row of the matrix D;
Ly = (Iy I I3 1)T; Qw = (01 O3 03 0PT;
Uy = (U Uy U3 UPT; V= (Vy Vo V3 VT

are the vectors composed of the parameters of the
vectors
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S]'Z ([] Q] U] V]')T, ]‘ = 1, 4 .

W, Iw, Qw, Uy, and Vy, are the input parameters
of the system (11). All the above-said about the
system (4) also refers to the system (11). Thus, the
condition number of the matrix W is minimum for the
optimal meter, and the parameters t', o', and B’ are
measured with high accuracy, and the Mueller matrices
of the polarization elements weakly differ from the
Mueller matrices of the ideal polarization elements.
Taking into account that

Ss]' = (Is]- QS]‘ Us]- Vs]-)T =
1

cos 20L]'- cos 2(01]" —PB’) +cost sin 201]'- sin 2((1]'- -B)
sin 2oc]'~ cos 2((1} —B') —cos 1’ cos 20L]'- sin 2(a} -B)

sin 1’ sin 2((1]'- -B)

(12)
where B’ is the angle of orientation of the transmittance
plane of the polarizer relative to the X'-axis, oc} is the
angle of the fast axis orientation relative to the X'-axis
and comparing expressions (12) and (3), one can see
that the matrices W and M differ by the sign in the
fourth column at (x]/» =a; B =P, and v = 1.

The matrix W also is not degenerate at any values
o, j=1,4,7,p.

The matrix inverse to M is defined in the form

A11 A21 A31 A41
A12 A22 A32 A42
A13 A23 A33 A43
AM A24 A34 A44

where A,,, is the algebraic complement to the element
M,,, of the matrix M, |M | is the determinant of the
matrix M.

Then, at cx]'- =o; B =PB,andt =1

M, M, Mz -M,
My My, My, =M,
W= cIwl==Mml,
Mgy Mgy Mgy =M,
My My Mz =My,
Ay Ay Ay Ay
A A A A
1 12 2 32 42
w1 :m . (13)
Ay Ay Ags Ay

Ay TAy Ty Ay

It is difficult to calculate the norm HM||2
subordinated to the Euclidean norm of the vector,
because one needs to determine the eigenvalues of the
matrix MTM.
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The Euclidean norm of the matrix ||M||E can be
calculated in a more simple way:

4
IMllg=~ | = M2,. (14)
m, n

Using Eq. (14), we obtain
Ml = Iwllg, Imtllg = [l wtllg, and
cond M = [[M || [[M=t]| g = [[Wllg W]z =cond W,

so, let us analyze only cond M.

Cond M is a function of the parameters oy, ..., oy,
B, 1, i.e., cond M = f(ay, ..., ay, B, ©). The purpose of
numerical analysis of the instrumental matrix M is to
determine the parameters aq, ..., a4, B, T, providing for
the minimum of cond M.

It is known that the Euclidean norm of the matrix

Mg > Ml (15)
SO
Mg Mg = [l 1t (16)

To find the minimum of cond M = f(ay, ..., o4, B,
1), let us use the Euclidean norm of the matrix || M |E,
because it is simpler, and the determined value of the
minimum of cond M is greater or equal to cond M
determined using I M||2 According to Eq. (7), it
leads to the increase of the expected errors
\/A]Z + AQ?2 + AU2 + AV? and does not worsen the
calculation of the accuracy characteristics of the device.

One can calculate the matrix D using one system
of equations, if introduce the matrix K of the 16x16 size.

Let us denote

Lij = (U Teial g Tooal 31 Iegalear - Tean) T,

where [.;; is the value of the signal I, at the ith
position of the phase shifting plate of the receiver and
jth position of the phase shifting plate of the source.

Dmn = (D“.. .D1/1D21...D2/1D31...D3/1D/11...D/1/1)T,

where D,,, is the element at the cross of mth row and
nth column of the matrix D.

Then K Dy, =1,;;, where K=M ® W is the
Kronecker (direct) product of M and W. Using the
relationships’

| Mz =~ SpMTM,

where SpMTM is the trace of the matrix MTM; KT =
=MTeWT, kKl=M1@W !, MT@ WD) (M® W)=
=(MTM) @ (WTW), Sp[(MTM) @ (WTW)] =
=SpMTM SpWTW, then one can write

cond K = || K HE || k-1 ||E = \/ SpKTK Sp(K~1)TK-1=

=[SpMTM SpW TW Sp(M-)TM -1 Sp(W-DTW 1=
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=A/SpM TM Sp(M ~DTM ~1A[SpW TW Sp(W —DHTW ~1 =
= cond M cond W.

Hence, cond K reaches minimum when cond M
and cond W have reached minimum.

The rigorous minimum of the function
cond M = f(ay, ..., a4, B, ©) was determined using the
Euclidean norm of the matrix for all aforementioned
variables with the preset step in the range
0<oay, ..., 00 <180° 0 <1t <180° at B =90°. After
finding the minimum value of cond M among the nodes
of the network of the values of the variables at the set
step of the change of their values, the step of the
change of the variables was decreased, and alternation
of the values of all aforementioned parameters was
applied again in the small range around the determined
node of the network of the values of the variables,
and the node was determined again, at which the
value of cond M is minimum. The step was decreased
until the condition fulfilled at the determined
node x(® ={a; =38.54° ay=75.14% a3 = 105.38°%
oy = 141.857°; B =90° 1 =131.795°} with sufficient
accuracy

of(x®)  of(x®)  of(x®) - ——
T R

To do this, the plots were constructed
cond M = f(ay, ..., oy, B, ©) for each variable (Fig. 3)
at the values of other variables taken from x(® =
={oy = 38.54; ay=175.14; o3=105.38; oy = 141.857°;
B =90° t = 131.795°.

(131.811; 4.4722)
5.05- cond M

405k (90.177; 4.47215)

(105.377; 4.472)| (141.857; 4.4722)

i Minimum
4.85] (38.541; 4.4722)

4758 o (75.140; 4.4722) | *3
- (12 |
465 L T o4
455[ B
4.45F

30 40 50 60 70 80 90 100 110 120 130 140 150

Angle, degs
Fig. 3. Numerical investigation of cond M = f(ay, ..., a4, B, T)
for extremes with respect to each variable at the point x0.

Figure 3 shows good closeness of x(®) to the point of
rigorous minimum of cond M, because the values of the
extremes with respect to each variable and the values of
the variables at the points of extremes are close to x(0).
The values oy, ..., a4, B, and T can be determined close
to their values at x(® with one or another accuracy.
Investigation of the sensitivity of cond M to the
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deviation of ay, ..., o4, B, and t from the optimal
values will enable us to state the requirements to the
accuracy of their determination relative to x(0). The
accuracy of determination is considered to mean the
accuracy of performing the mechanical operation, then
the determined value of the parameter can be measured
with any preset accuracy and, hence, cond M can be
determined with the same accuracy.

Curve 1 (Fig. 4) shows the maximum possible
value of cond M at B =90°, t = 131.795° and absolute
error A in setting oy, ..., ay from their values at the
point of rigorous minimum. It corresponds to the case
when the parameters B and t are set with very high
accuracy, and the parameters o, ..., ay are successively
set during measurements with a less accuracy. Let us
ascertain, what maximum value of cond M can be
realized. In calculating, the maximum values of cond M
was determined among the nodes of the network of the
values of the variables at f =90° and © = 131.795° at
alternation with the preset step of the change of the
variables in the range oy = 38.54° £ A; oy = 75.14° £ A;
agz = 105.38° £ A; oy = 141.857° + A.

Max cond M

Curve 1
B =90°, 1= 131.795°
4.80 - C=4.47225+0.00067 €=
[ 4=0.0203+0.00071 4=0.02332£0.00028

4750 B =0.00157 « 0.00023 B =0.00201 £ 0.00009
L B=90° Curve 2 2
470 C=4.47274+0.00112

L A=0.01939+0.00119 4
4.65| B=10.00279 + 0.00039

L ©=131.795° Curve 3
4.60L C=4.47305+0.00121
L A=0.01965+0.00128
4.55L B=0.00245+0.00043

Curve 4
C =4.47225 %+ 0.00067

4.50 - Approximation function

F Max cond M = C + AA? + BA?
4.45 1 L 1 L 1 L 1 L 1 L 1 L 1 )
0 0.5 1 1.5 2 2.5 3 A, degs.
Fig. 4. Sensitivity of cond M to the absolute deviations of
O, ..., 04, B, T from their values at the point of rigorous
minimum (9, min cond M = 4.472195 at the point 20,

Curve 2 (Fig. 4) shows the maximum possible
value of cond M at B =90° and absolute error A in
setting a, ..., o4 and t from their values at the point
of rigorous minimum.

Curve 3 (Fig. 4) shows the maximum possible
value of cond M at t = 131.795° and absolute error A in
setting o, ..., oy and B from their values at the point
of rigorous minimum.

Curve 3 (Fig. 4) shows the maximum possible
value of cond M at absolute error A in setting
O, ..., 04, T, and B from their values at the point of
rigorous minimum. It corresponds to the case when all
parameters have beet set with deviations from their
values at the point of rigorous minimum, then the
maximum value of cond M can be greater than in other
cases. Comparison of the curves /—4 (Fig. 4) shows
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that accuracy of setting t stronger affects the values of
the maximum possible value of cond M than the
accuracy of setting B, but it is not decisive for the
value of the maximum cond M.

The phase plates with ©=90° are widely used
now. The point xD = {oy =38.137°; ay = 75.541°;
og = 104.379° oy = 141.830°; B =90° 1t =90°, at
which the following condition is fulfilled with a
sufficient accuracy, was found using the program
described above at 1t =90° and B =90° with the
successive decrease of the step of the change of the
variables ay, ..., o4

) of(x D) . —
20, = B =0,i= 1,4 .

Figure 5 shows good closeness of x{(1) to the point
of the minimum of cond M = f(ay, ..., oy, B, T = 90°),
because the values of extremes with respect to each
variable and the values of the variables at the points of
extremes are close to x(1).

M

cond (90.0; 6.419087)

6.9  Minimum
(38.139; 6.41909) (104,381; 6.41909)

6.8 [ ay, | (75572 6.41909) (141.826; 6.41909)
L (0]

6.7 b o M

6.6

6.5 P

6'4 C 1 1 1 1 1 1 1 1 1 1 1 1 1
30 40 S50 60 70 80 90 100 110 120 130 140 150

Angle, degs.
Fig. 5. Numerical investigation of cond M = f(ay, ..., o4, B,

1 =90°) for extreme with respect to each variable at the
point x(D,

Figure 6 shows the effect of the absolute error A
in setting oy, ..., oy, B, and t near their values at the
point 2" on the value of cond M. Comparison of
Fig. 6 and Fig. 4 shows that the value of cond M at
the point x(1 is greater than that at the point x(0).
Comparison of the curves /-4 (Fig. 6) shows that the
absolute error in setting 1 relative to its value at the
point (! stronger affects the value of the maximum
cond M than the absolute error in setting B relative to
its value at the point (", and it is decisive for the
maximum value of cond M.

If the condition of constancy of the step of the
change a is included in the algorithm of the control of
the polarization block, i.e., as — a3 = ag — oy = 0y — dy,
then the point of the conditional minimum of cond M
at ©=131.795° +2 = {0y = 39.3° ay = 73.1°; a3 = 106.9°;
oy = 140.7°; B = 90°; T = 131.795°.
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Max cond M

B =90° Curve 1 Curve 4

€=6.41926 £0.00115 = 6 41891 + 0.00041

4=0.04357 £ 0.00298 4 = (.04540 + 0.00107
74 B =0.00469 % 0.00065 p = (.00409 + 0.00023

Lt =90° Curve 2
7.2 | C=6.41931 £ 0.00062 4
A =0.04295 + 0.00066
r B=0.00282+ 0.00022

B, T=90° Curve 3

| C=6.41925+0.0007
A =0.04091 + 0.00074

"B =0.00317 £ 0.00025

7.0

6.8,

6.6, 1

Approximation function
Max cond M C + DA + AA2 + BA®

0 0.5 1 1.5 2 2. 5

6.4 | —

3 A, degs.

Fig. 6. Sensitivity of cond M to the absolute deviations of
O, ..., 04, B, T from their values at the point )
min cond M = 6.419086 at the point x(1).

Curves 1—4 (Fig. 7) show the effect of the absolute
errors in setting oy, ..., oy, B, T relative to their values
at the point of the conditional minimum (2.
Comparison of Fig. 7 and Fig. 4 shows insignificant
increase of cond M at the point x?) as compared with
x(0). Comparison of curves 2 and 3 (Fig. 7) shows that
the absolute error in setting t relative to its value at
the point x(2) stronger affects the value of cond M than
the absolute error in setting B relative to its value at
the point 22 but it is not decisive.

Max cond M

Curve 1
0°, © = 131.795°
.51288 £ 0.00212
.00623 + 0.00548
.00374 +0.0012
.06052 + 0.0067

131.795° Curve 2
4.51285+0.00221
0.00704 + 0.00572 4
0.00394 + 0.00125
0.06094 + 0.00699

90° Curve 3
4.51241 £ 0.00357
0.00053 +0.00922
0.00589 + 0.00202
0.06777 £0.01128

Curve 4

o

4.51239 £ 0.00365
0.00138 +0.00943
0.00606 + 0.00206
0.06815+0.01154

S
o
=R =R =N

OO0

4.9 -

btcmﬁ‘*
oo

4.8

4.7 r

btc:bﬁ‘@

4.6

Approximation function
Max cond M = C + DA + AA? + BA3

0 05 1 1.5 2 25 A degs.

4.5

Fig. 7. Sensitivity of cond M to the absolute deviations of
O, ..., 04, B, T from their values at the point of conditional
minimum 2, min cond M = 4.513566 at the point x(?.
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If the condition of constancy of the step of
the change o is included in the algorithm of control
of the polarization block, but at t = 90°, the point
of the conditional minimum of cond M x® =
{oy =39.9° oy =73.3% oaz=106.7° o4 = 140.1°;
B =90° = 90°.

Curves -4 (Fig. 8) show the effect of the
absolute errors in setting oy, ..., a4, B, T relative to
their values at the point of the conditional minimum
2@, The value of cond M at the point 3 is greater
than the value of cond M at the points x(2), x(1) and
20 but it insignificantly differs from the value of
cond M at the point (1), Comparison of curves 2 and 3
(Fig. 8) shows that the absolute error in setting 1
relative to its value at the point 3 stronger affects
the value of cond M than the absolute error in setting B
relative to its value at the point 13 and it is decisive
for the maximum possible value of cond M. Curves in
Figs. 4 and 6—8 were calculated with the step A =0.5.
The function that approximates the calculated tables
and the coefficients at the approximation function for
each curve are presented in each figure.

Max cond M

B, t=90° Curve 1 Curve 4

C =6.52502 +0.00331 C=6.52514 +0.00393
A=-0.00911+£0.00854 A =-0.00575+0.01015
B=0.01249+0.00187 B=0.0144£0.00222
D=0.11997 £0.01045 D =0.23158 £ 0.01242
T=90° Curve 2

C =6.52498 + 0.00306
-A=-0.0069 £ 0.0079 4

7.6 LB=0.01203 £0.00173
| D=0.11972 +0.00967

7.4 B =90° Curve 3

FC =6.52521 £ 0.00374
7.2 LA=-0.00684 +0.00965
| B=0.01462 £ 0.00211
D =0.23098 +0.01181

7.0 -
6.8 +
6.6 Approximation function
r Max cond M = C + DA + AA? + BA3
64 1 " 1 " 1 " 1 " 1 " 1 " 1 "

0 0.5 1 1.5 2 2.5 A, degs.
Fig. 8. Sensitivity of cond M to the absolute deviations of
O, ..., 04, B, T from their values at the point of conditional
minimum x®, min cond M = 6.526094 at the point x®,

The calculations have shown that the maximum
value of cond M for the considered absolute errors A
lies at a node point of the network of values of the
variables, which contains the boundaries of the ranges
of their possible values determined by A. Hence, the
increase of the accuracy of setting any parameter
always leads only to a decrease of cond M, i.e., to the
increase of the measurement accuracy.



V.G. Oshlakov and Yu.G. Borkov

Acknowledgment

In conclusion authors would like to thank
academician V.E. Zuev for help.

References

1. V.V. Mar’enko and T.V. Molebnaya, Optiko-
Mekhanicheskaya Promyshlennost’, No. 7, 68=71 (1990).

2. V.G. Oshlakov, Atmos. Oceanic Opt. 5, No. 11, 767—769
(1992).

Vol. 15, No. 7 /July 2002/ Atmos. Oceanic Opt. 581

3. V.G. Oshlakov, in: Int. Geoscience and Remote Sensing
Symposium Proceedings, Vol. 111 (1995), pp. 1776-1778.

4. A. Gerrard and J.M. Burch, Introduction to Matrix
Methods in Optics (Wiley, New York, 1975), 341 pp.

5. G.F. Bohren and D.R. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, New York, 1983).

6. I.S. Berezin and N.P. Zhidkov, Methods of Calculations
(Nauka, Moscow, 1959), 464 pp.

7. V.V. Voevodin and Yu.A. Kuznetsov,
Calculations (Nauka, Moscow, 1984), 318 pp.

Matrices and



