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New methods and algorithms of dynamic-stochastic prediction of temperature and wind fields are
considered as applied to assessment of mesoscale atmospheric pollution. Based on data of many-year field
observations, the proposed algorithm is studied for its use in spatial prediction of mean temperature and

zonal and meridional components of the wind velocity.

Among numerous problems of applied meteorology,
the problem on spatial prediction of mesometeorological
fields (first of all, wind and temperature fields) for a
territory not covered by observations based on
measurements in neighboring regions has recently
occupied one of the central places. This prediction is
needed, in particular, for meteorological provision of
ecological issues connected with assessment of air
pollution on a local scale (for example, in big cities and
industrial centers). Such provision is usually made for
the planetary boundary layer with the use of the
pollutant transport equation and based on the spatial
distribution of wind and temperature above the territory
of interest.

It is obvious that for meteorological provision of
such issues the mesoscale wind and temperature fields
should be extrapolated with high spatial and time
resolution, as well as high accuracy. However, this
requirement cannot be met when applying the widely
used method of optimal extrapolation. Besides, this
method requires in-depth study of an object modeled.

In this connection, to solve the problem on spatial
prediction of mesoscale wind and temperature fields, we
propose a dynamic-stochastic approach based on the use
of the Kalman filtering and the generalized model of
meteorological parameter behavior in space and time
based on first-order stochastic differential equations.

It should be noted that this paper continues the
study begun in Refs. 1 and 2, but its feature is the use of
the mechanism of adaptation to unknown approximation
parameters of correlation functions determining current
properties of the processes.

Let us consider now the technique of solving the
problem formulated.

Physically, the problem of spatial prediction of the
field of a meteorological parameter is formulated as
follows: using data of S — 1 measurement stations, it is
necessary to assess (predict) this parameter at the Sth
point of a territory, for which measurements are lacking.
Consider the solution of this problem for a mesoscale
territory.
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The specific feature of the mesoscale allows
application of the splitting method, which, in its turn,
allows the meteorological parameter to be assessed at
some fixed height level neglecting its relations to the
neighboring levels. In this case, the entire height range
can be covered by N Kalman filters, and each filter uses
measurements obtained for the given height and for all
stations situated in the neighboring regions covered by
the observations. Prediction is sought for the same
height, but for the point with the coordinates (xi, y)
at the territory with no experimental data available.
Further consideration deals only with one filter at an
arbitrary height level.

According to the previous study, we can assert that
the temporal and spatial correlation properties of the
meteorological parameter £(¢) sought on the mesoscale
are described by the following functions!:

pe(t) = exp(— ar); (D
n:(p) = exp(= Bp), )

where t is the time shift; p is the space shift; o and B
are the approximating coefficients (in the general case,
depending on the height /).

In accordance with Egs. (1) and (2), let us
introduce a system of generalized difference equations
describing the behavior of a random process in space
and time:

X1(k+1):X1(k)(1—(XAt)+0)1(k)y
X2(k+1)=X1(k) (1—BA712)(1—(XAt)+0)2(k),
Xy (k41D = X, () (1= BAr) (- AD + 05(R),  (3)

Xg(k+1=X,(B) 1 -BArg) (- o At) + (k)
where
X(k+1)=
=X+ 1), Xolk+ 1), X3k + 1), .., Xg(k+ DT
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is the state vector, whose elements are the values of the
meteorological parameter & at the points with the
coordinates x; and y; (i=1,2,...,5) at the time
moments k& + 1 (and X{(k +1) is the value of the
meteorological ~parameter at the point (xy, yq)
inaccessible for measurements;

Aryi = (e = 2D + (g = y)*1 2

is the distance between the first point and the ith point
(i=2,3,...,8); At is the time discretization interval;
k=0,1,2,.. K is the iteration number (discrete
time);

W) =lo(k), 0y(k), a5(k), ..., os(R) |

is the column vector of the state noise.

The system of equations (3) can be used as a
model of the space of states at synthesizing the
algorithm for estimation of the current values of
meteorological parameters of interest within the
framework of the Kalman filtering theory.3 Application
of Eq. (3) is limited due to the uncertain parameters o
and B and their dependence on height and time. This
limitation can be lifted by introducing additional
variables Xgy1(k) = a(t, #) and Xgi»(k) = B(¢, ) in
the state vector X(k) and passing to the extended
system of difference equations:

X R+ =X (B[~ Xg,. (R At] + 0 (R),

Xo(R+1)= X, (R [1- Xg o (R)Ar;, | [1 - X g, (R)AL]+
+ 0, (k),

X3(k+1D) =X (R [1 = X g9 (R)Ar5][1 - X g, (R)AL] +

+o3(k), (4)

Xs(k+1):X1(k)[1—XS+2(k)AT1S][1—XS+1(k)At]+
+(D5(k)y
X5+1(k+1)=XS+1(k),

XS+2(k+1)=XS+2(k).

It should be noted that the state space (4) is
written based on the assumption of constant Xg{(k)
and X¢.(k) within the whole observation interval.

The equations of observations at direct measurement
of the meteorological parameter E(k) at the points
i=2,3, ..., S can be presented as an additive mixture of
the true value X;(k) and the measurement error

};1(k):X2(k)+81(k),

Yy (k) = X3(R) + 55 (),

2= At e 5)
?S71(k):X5(k)+8s,1(k),

where
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Y = |V, (0, Vo (B, ..., Vo4 ()|

is the measurement vector at the selected (fixed) height
level h;

e(k) =le(k), e5(k), e5(k), ..., es1(R) | T

is the vector of measurement errors (noise).
Let us present Egs. (4) and (5) in the matrix
form:

X(k+1) = ®[X(R)] +T - W(k), (6)
Y(k) = H - X&) + k), (7
where
X (R - X, 4 (R)AL]
X1 (k)[1 — XS+2 (k)A712][1 — XS+1 (k)At]
X1 (k)[1 - XS+2 (k)A7'13][1 - XS+1 (k)At]
D[X(R)]=|:
X1(k)[1—XS+2(k)A715][1—XS+1(k)At]
XS+1(k)
Xgn(R)

is the transition vector-function of states;

OO

oo SO O

SO =

is the (S — 1) x (S + 2) observation matrix;

N Y )
OO O

OO O-

SO -

is the (S + 2) x .S transition noise matrix.

Equations (6) and (7) completely determine the
structure of the assessment algorithm.3

As the Eqgs. (6) are nonlinear, the extended Kalman
filter should be used as a method for algorithm synthesis.
In this case, the equations of the optimal estimation of
the state vector X(k) have the following form:

X(k+1)=X(k+1|k) + GX, k+1) x

x [Y(k+1) —H-X(k+1]|R)], (8)

where
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i(k + 1) :|5(1v )A(Zv [EXX) &S+2|

is the estimate of the state vector at the time (& + 1);

X(k + 1] k) = ®[X(R)] )

is the vector of predicted estimates at the time (k + 1)
from the data at the step &; G()A(, k+1) is the
(S+2) x (S —1) matrix of weighting coefficients.

The weighting coefficients in the extended Kalman
filter are calculated by recurring matrix equations of
the following form:

GX, k+1) =Pk +1]k) - H' x
x[H-PG+1k) -H +R(G+ D],  10)
P(k+1|k) =F [X(B)] - P(k|R) - FT [X(R)] +

+T-R,(k) - T, (11)

Pk+1|k+1)=
=[I-GX, k+1) -H|-Phk+1lk), (12)

where P(k+1|k) is the a posteriori (S+2)x(S+2)
correlation ~ matrix =~ of  the  prediction errors;
P(k+1|lk+1) is the a priori (S+2)x(S+2)
correlation matrix of the prediction errors; R.(k + 1) is
the (S —1) x (§ —1) diagonal correlation matrix of
the observation noise; R,(k) is the S xS diagonal
correlation matrix of the state noise; I is the

(S + 2)x(S + 2) unit matrix; F [}A((k)] = M is
oX (k)

the (S +2) x (S + 2) Jacoby matrix of the transition
vector-function.

To start the filtering algorithm (8)—(12) at the
time %k =0 (initiation time), we should specify the
following initial conditions:

X(0) = M({X(0)} — the initial estimation vector,
where M is the mathematical expectation vector;
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P(0}0) = M{[X(0) — M{X(O}I[X(0) — M{X(0)}]™)

— the initial correlation matrix of the estimation errors;
as well as the elements of the correlation noise matrices
R.(0) and R,(0).

In practice, the values X(0) and P(0|0) can be
specified based on minimum information about the
actual properties of the system, and in the case of
complete lack of useful information it is usually

specified that X(0) = 0 and P(0[0) = 1.

Consider now the results of studying the
performance of the Kalman filtering algorithm as
applied to the problem on spatial prediction of layer-
mean values of temperature (<T>, ;) and zonal
(<U>j,,) and meridional (<V>; ;) wind velocity
components, which are usually used in making practical
calculations of the spread of pollutant clouds? and
calculated with the following equations:

h
1
<E>p p=—— I&(z)dz,
" h—hy
Ty

where <...> denote vertical averaging over some
atmospheric layer i — hy (hy and & are the heights of its
lower and upper boundaries, and %y = 0 corresponds to
the ground level); & is the value of the meteorological
parameter.

It should be noted here that to assess the
performance of the Kalman filtering algorithm, we used
many-year (1971-1975) two-time (00:00 and 12:00
GMT) observations at five radiosonde stations: Warsaw
(52°11'N, 20°58'E), Kaunas (54°53'N, 23°53'E), Brest
(52°07'N, 23°41'E), Minsk (53°11'N, 27°32'E), and
Lvov  (49°49'N, 23°57'E) that form a typical
mesometeorological area. As a control station (for
which spatial prediction was made), the Warsaw
Station was used. This station is separated by 180 km
from the nearest Station in Brest. An important
circumstance is that under conditions of zonally average
west-to-east transport, Lvov Station is at the territory
lying to the west from the region covered by the
observations, that is, we consider the case that the
problem on spatial prediction cannot be solved based on
the hydrodynamic model.

Table. Standard (5) and relative (0, %) errors of spatial prediction of layer-mean temperature
and zonal and meridional wind based on Kalman filtering algorithm, as well as the rms deviations (c)
of estimates of these parameters

Layer, Temperature, °C Zonal wind, m /s Meridional wind, m /s

m 5 o 0 5 s | o 5 s | o
0-100 1.7 4.6 37 1.6 3.4 47 1.6 3.1 52
0-200 1.7 4.6 37 1.7 3.6 47 1.7 3.3 52
0-400 1.5 4.5 33 1.8 3.8 47 1.7 3.5 49
0-800 1.3 4.3 30 1.8 4.1 44 1.8 3.7 49
0-1200 1.2 4.1 29 1.8 4.3 43 1.8 3.9 46
0-1600 1.2 4.0 30 1.9 4.4 43 1.8 4.0 45
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As an example, the Table presents the results of
statistical estimation of the performance of the Kalman
filtering algorithm in the procedure of spatial prediction
of the parameters (<T>j ), (KU>; ;), and (V> )
with the use of standard & and relative 6 errors of such
prediction (0 =8 /0, in %; o is the standard deviation of
the parameter).

It should be noted that the Table presents the
results of statistical estimation only for summer season,
when spatial correlations in the midlatitudes of the
Northern Hemisphere are much weaker than in winter.>
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