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Verification of the Lagrangian stochastic model of smoke plume
spread in the turbulent atmosphere
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A numerical method is proposed for solution of the problem on smoke plume spread in the
turbulent atmosphere based on Lagrangian model. The algorithm proposed is adapted for use on a
network of computers operated in parallel and implemented within the framework of the MPI system.
The efficiency of the model and of the numerical method proposed is verified as applied to the problem of
turbulent dissipation of perturbations from a linear heat source.

Introduction

As known turbulent fluxes often occur in
nature and in the atmosphere in particular. It is also
well-known that all models developed for describing of
such fluxes are much more complicated than similar
models for laminar fluxes by both the level of
assumptions admitted during their derivation and by
the laboriousness of obtaining the solutions. The
validity of these general notes can be clearly seen in
the history of the problem on the smoke plume spread
in the turbulent atmosphere. The main peculiarities of
this practically important problem are chemical
reactions proceeding in the plume and the temperature
difference between the smoke plume and the
atmosphere that gives rise to intense mixing. The
Table borrowed from Ref. 1 (Ref. 1 also gives a
sufficiently detailed literature overview) compares
different approaches to solution of this problem, their
advantages and disadvantages, as well as domains of
applicability.

In the first turn, it is interesting to note that
automodel solutions based on the simplified consideration
of all factors in combination with the simplest geometric
models of dispersal do form still the basis for engineering
methods of calculating the concentrations of smoke plume
components in the vicinity of sources.?

Investigations of plume spread with the use of
Reynolds averaged Navier —Stokes equations (RANS)
employ simplified representations for the terms of the
equations describing chemical reactions of smoke plume

components and their mixing in the atmosphere. Such
an approach, as automodel solutions, yields only mean
characteristics of the plume and often gives rise to
additional parameters, which cannot be measured
experimentally.

In contrast to these approaches, the Lagrangian
statistical models, namely, Lagrangian dispersion model
(LDM) and Lagrangian turbulence model (LTM), yield
not only the mean, but also statistical characteristics of
a plume. The Lagrangian dispersion models imitate
processes in the plume, but imply that the field of the
main flux is known, i.e., calculated by other methods
or approximated. Using the Lagrangian turbulence
models, the flux field can be calculated at different
altitude dependences of the wind velocity and
temperature, which, as known, determine conditions of
the smoke plume spread. An important advantage of these
models is the possibility of accounting for even nonlinear
chemical reactions proceeding in the smoke plume. One of
such models will be considered in detail in this paper.

At direct numerical simulation and large eddy
simulation, the Navier —Stokes equations are solved
directly (LES). In LES, however, additional
assumptions are used concerning the behavior of small-
scale  turbulence. Both these approaches are
computationally  expensive and impose certain
restrictions on the Reynolds, Schmidt, and Damkohler
numbers, as well as on the shape and size of an object.
Therefore, they are now used for solution of simple
problems, which can be then used as test ones for
verification of other models.

Different methods for solution of the problem on smoke plume spread
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1. Description of the model

The Lagrangian turbulence model proposed in Ref. 1
is based on linear stochastic differential equations for the
coordinates x = (xq,x9,23), velocities u = (uy, uy, ug),
and the potential temperature, 0, of gas particles:
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Deterministic changes in the velocity and potential
temperature of a particle are described by the first three
terms in the right-hand sides with the unknown
coefficients a;, Gy, and G;. The first term reflects the
effect of gradients in the flux field, whereas the second
and third terms describe the difference in the velocity and
temperature between the gas and the flux at the
considered point. The last terms describe the effect of
“stochastic forces.” The “white noise” dW,/dt is a
Gaussian process with zero mean [dW;/dt0O0=0 and
uncorrelated values at different moments in time
mWi/dt(tO dVVj/dt(tz)D= 51] 6(f1 - t2), The latter
condition written for i =4 means that the stochastic
terms in the equations for the velocity and temperature
do not give rise to the systematic effect on particle
motion, if time steps are larger than the characteristic
time introduced by Kolmogorov.3

To derive equations for the coefficients a;, G;;, and
G; (Ref. 1), the following procedure is used. First, the
transport Fokker —Planck equation is derived for the
probability density W(x, ¢; u, 8). Multiplying this
equation by the corresponding combinations of u and 6
and integrating the right-hand and left-hand sides,
Heinz and Van Dop! obtain the system of equations for
probability density moments, which are compared with
RANS. If it is assumed in making such a comparison
that (1) the Boussinesq approximation is wvalid,
(2) RANS is closed with the help of theories from
Refs. 3 and 4, and (3) the functional form of the
coefficients b;; corresponds to those from Ref. 5, then
for the model coefficients we have the following
equations:

(b°);; = Co 478/ (20); by = Cy <(8 — <6>)*>/ (20);
Co= (k1 =2)/3; Cy=2ks = 2ks— ky; Gjj=—k8;;/ (41);
G; = Bgdis; Gy = 0; G4 = — (2k3 — k) /(41);
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where p, p, v, a, and g are the mean values of density
and pressure, kinematic viscosity and thermal
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conductivity coefficients, and the free fall acceleration,
respectively; ¢2 = <(u; — <u;>) (u; — <u;>)> is the
doubled kinetic energy of turbulent pulsations;
1 =¢q2/(2¢) is the dissipation time; € is the rate of
dissipation of this energy; B is the thermal expansion
coefficient; k; are the closure coefficients.

Such a definition of the coefficients leads to the
situation that the stochastic differential equations of the
model depend on the function T, which describes the
process of mixing of the smoke plume with the
atmosphere. According to Ref. 6, this function can be
described by the equation
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Having introduced this equation, the system of
equations for LTM becomes closed for the given initial
and boundary conditions, because all the parameters
determining variations of the characteristics of gas
particles (mean velocity and temperature, their
covariations, and pressure gradient) can be calculated
as mean values (following Euler) of the corresponding
parameters of gas particles.”

2. Numerical method

The Lagrangian models, by their idea, are oriented
at applying statistical solution methods (Monte Carlo
methods). At the initial moment, the coordinates and
velocities of N particles are specified in the
computational domain. At the following moments in
time, these particles move according to the model
equations and the preset boundary conditions. At large
values of time ¢, we obtain solution of the stationary
problem. Let us consider briefly the main peculiarities in
the applied algorithm for the case of a rectangular
computational domain.

1. The accuracy, with which the results are
obtained by the Monte Carlo methods, is usually
proportional to N71/2 (N is the number of particles).
This implies high time expenses and heavy demands
imposed on the computer memory. These demands
become less strict, if the problem is solved using
computers operated in parallel with shared memory. In
this case, for the algorithm multisequencing, it is the
easiest way to use division of the computational domain
into several subdomains. The exchange between
processors reduces to transport of particles leaving the
corresponding subdomain from one processor to another
for a time step.

2. The speed distribution of incoming particles
should be preset at the left boundary of the
computational domain. Since the exact form of this
function is usually unknown in the considered gas-
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dynamic problems, some functional class (for example,
local Maxwell distribution) is used, and the parameters
of this distribution are calculated based on additional
experimental information (for example, velocity and
temperature and their variances) along the boundary.

3. The conditions reflecting the character of
interaction of gas particles with surfaces should be
specified at the upper and lower boundaries of the
computational domain. These surfaces may be the
Earth’s surface or the surface of an experimental setup
or some line in a flux, which serves as a boundary, in a
particular  consideration. Unfortunately, these
conditions are unknown as well. Most often the
condition of specular reflection is accepted at these
boundaries. According to this condition, a particle
interacting with the surface keeps the tangential
component of momentum unchanged and alternates the
sign of the normal component.

4. The equation for time of dissipation of
turbulent pulsations T includes derivatives of the
components of the mean velocity vector with respect to
coordinates. Since the components of the velocity
vector are calculated as means of the corresponding
components of velocity of gas particles being in the
considered cell of the computational grid at a given
moment and, consequently, include a statistical error,
special measures should be undertaken for correct
calculation of the derivatives. First, to decrease the
statistical error, the components of the velocity vector
are calculated as means for some number (on the order
of several tens) of time steps. Second, before
calculating the derivatives, the problem of a cubic
spline minimizing the value of the smoothing functional
is solved.8

5. When solving stationary problems by the
methods of statistical simulation based on a correct
model, the problems of solution stability and
specification of the initial approximation are usually
absent.

6. The considered Lagrangian model contains
numerical parameters. Although these parameters obey
some restrictions originating from the mathematical
form and physical peculiarities of the model, the
problem of searching the optimal set of these
parameters is one of the most laborious components of
the process of model verification.

3. Description of the test problem and
discussion

For verification of the model and the numerical
method, we have chosen Ref. 9, which studied
experimentally the spread of temperature perturbations in
the turbulent boundary layer. In a wind tunnel at some
distance z =/ =60 mm from a rough wall, a wire was
installed and electric current was passed through it. In
some cross sections along the flow, temperature and
two velocity components were measured. The
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measurements showed that the pressure gradient in the
whole flow field is zero, and the mean velocity is well
described by the equation u/u. = 2.63 In(500z,/h),
where u. = 0.48 m/s. This flux was calculated by the
Monte Carlo method based on the considered
Lagrangian model. The local Maxwell speed distribution
function was specified for incoming particles at the left
boundary of the computational domain. The mean
velocity was accepted equal to the measured one, and
the factors in the exponents were determined from the
measured values of rms deviations of the velocity
components from the mean value. The condition of
specular reflection was set on the upper and lower
boundaries, and the free condition was taken at the
right-hand side boundary: all outgoing particles were
excluded from the consideration. The calculations were
conducted on the massive parallel computer of the
Institute of Mathematical Simulation RAS.

The comparison of calculations with measurements
in two cross sections x,/h = 2.5 and 15 is depicted in
Figs. 1 and 2 as dependences of u,/u. and 6,6, on z/h.
It can be seen that calculations closely agree with the
experimental data far from the upper and lower
boundaries. As a consequence of ill-posed boundary
conditions, a peculiar “boundary layer” is formed near
the lower boundary, and the speed of the flux in this
layer increases. The behavior of the dependence
0,/8.(z/h) (see Fig. 2) near the wall at x/h =15 is
different than the experimental one, and this can be
explained by two factors. First, the effect of the
computational “boundary layer” on the wall is already
marked in this cross section. Second, the energy
exchange at the wall wunder conditions of the
experiment and our computations was different: the
condition of specular reflection implies the absence of
exchange, whereas the surface used in the experiments
had finite thermal conductivity.

U/ Uy

———= Ref. 9, u/u*= 2.63 In(500z,/h) ,

20 F—a— Calculation x/A=2.5 et

P d

|l —0— Calculation x/2=15 e

16 | e

o e
Oz

I o"s
H-0—0""

; :_/
3%

1n(500z,/h)
14 € I . 1 . L . 1
0 2 4 6 8

Fig. 1. Comparison of our calculations with the experimental
data (speed of flux).

It should be noted that the computational
“boundary layer” becomes more thin, if in place of the
condition of specular reflection we use physically better
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justified condition of reflection with the Maxwell speed
distribution function having zero mean.

2[0/0.4
161 A Ref. 9 x/h=25
O Ref. 9 x/h=15
1.2k Calculation

0.8

0.4

0

Fig. 2. Comparison of our calculations with experimental data
(temperature within the flux).

Conclusions

Thus, our study has shown that

1. The considered Lagrangian stochastic model can
be used to solve problems of plume spread from smoke
stacks in the turbulent atmosphere.

2. The proposed algorithm of stochastic modeling
has sufficient efficiency.
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3. When solving practical problems, it should be
taken into account that a computational “boundary
layer” exists near the Earth’s surface and the measures
should be undertaken to decrease this layer.
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