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The gas kinetics collision integrals describing the diffusion and viscosity are calculated as
functions of dimensionless temperature and energy of dipole—dipole interactions. The algebraic
approximations for viscosity and diffusion coefficients of polar gases are constructed with the mean
accuracy of 0.5%. Based on experimental data on the temperature dependence of the water vapor viscosity
coefficient, parameters of the Lennard—Jones (12—6) potential are determined for HyO—-H,O interaction.

Introduction

In Ref. 1, Monchick and Mason proposed a scheme
and calculated the transport coefficients for polar (and
nonpolar, as a particular case) gases from classical
calculations of scattering cross sections based on the
Lennard —Jones intermolecular interaction potential
supplemented with the dipole—dipole interaction
(Stockmayer potential). The model of Ref. 1 provides for
a good quantitative description of experimental data, and
its main advantage is the possibility of determining the
parameters of Lennard—Jones potential from the
experimental dependence of the viscosity and diffusion
coefficients on the gas temperature. The tables of collision
integrals of the Boltzmann kinetic theory that determine
the transport coefficients were calculated in Ref. 1 and
then those were used in Refs. 2 and 3. At the same time,
the tabular representation of the dependence of collision
integrals on the reduced temperature and the dipole
moment is inconvenient from the viewpoint of solution
of the inverse problem on reconstruction of the potential.
Thus, Monchick and Mason! used a heuristic graphical
method for this purpose, and minimization with the use
of the least squares method was made likely by
interpolating the tables.

The aim of this work is to reconstruct the
calculations of Ref. 1 in a wider range of values of the
reduced dipole moment and to approximate algebraically
the dependence of the calculated diffusion and viscosity
coefficients on the reduced temperature and the reduced
dipole moment, since such an approximation is more
convenient in reconstructing the potential than tables.

1. Computational scheme

According to the kinetic theory of gases,!™3 the
viscosity n and self-diffusion Djq coefficients can be
expressed through the collision integrals Q9" as:

5 mkT fr| 2,2)*
=—|J— — QY s 1
_ 3 |kT [p []5ap*
D _—1/—— QD) 2
780 V1w 0(2)/< > 2)

0235-6880,/01 /09 765-04 $02.00

Here T and n are the gas temperature and the particle
number density; m is the molecular mass; k is the
Boltzmann constant; 0 is the parameter of the
Lennard — Jones potential that denotes the distance, at
which the potential is zero. The dimensionless parameters
fn and fp are expressed through the collision integrals
averaged over orientation [@.9)*[]
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The diffusion coefficient of a binary mixture Dy, is
connected with the self-diffusion coefficient as follows?2:
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where n{, and my , are the number densities and the
molecular masses of gas mixture components; py, are
mass densities of the components.

The collision integrals are calculated from the
Stockmayer potential of intermolecular interactions:

V(r) = 4gy [(0g/ 1> = (5y/ 1] = 2dy dy 5/7°, (5)

where 7 is the separation between the centers of
molecules, €y is the minimum (depth of the potential
well) of the Lennard — Jones potential represented by the
first term in Eq. (5); d4 5 are the constant dipole moments
of molecules; & is the angular shape factor (scattering
phase function) of dipole—dipole interaction:

& = cosBy cosBy — sinB; sinBy cosd /2. (6)

Here 8y, are polar angles and ¢ is the angle of
orientation of dipole moments about the axis z passing
through the centers of molecules.

The order of calculations was as follows. First, the
scattering angles were calculated in the system of the
center of gravity by the classical equation4:
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where b is the impact parameter; o is the relative
velocity of molecules in the system of the center of
gravity; 7y is the smallest possible separation between
molecules, it is determined from the condition that the
radicand in Eq. (7) equals zero.

Then the scattering cross sections were determined
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Averaging of the cross sections (8) over
orientations and velocities of molecules yields the
sought averaged collision integrals:
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According to Ref. 5, the triple integration in
Eq. (9) can be replaced by a single one:
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where arcsinh x is the inverse hyperbolic sine.

All the computer codes used in calculations were
written on Fortran and assumed doubled accuracy.
Integration in Egs. (7), (8), (10), and (11) was made
with the use of the 7-point Newton — Cotes quadrature
formula with the splitting of the complete intervals of
integration into 1000—2500 parts. In calculations of the
scattering angles (7), particular attention has been paid
to the orbiting effect4 leading to the logarithmic
divergence of angles for certain values of energies and
impact parameters. The resulting error in calculation of
angles that largely determines the error of collision
integrals did not exceed 0.1% in orbiting regions and
was 2 to 4 orders of magnitude less beyond these regions.

2. Calculated results and their

approximation

The calculated values of averaged collision
integrals @ D*Oand @22*Odetermining diffusion and
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viscosity are shown in Figs. 1 and 2 as functions of the
reduced temperature T* and dimensionless parameter of
dipole—dipole interaction 8,y:

T* = kT /€y, Opax = di dy/ (289 03).  (12)

As is seen from Figs. 1 and 2, the dependences of the
collision integrals @ D*0and @©2-2*0on T* and &y,
are qualitatively the same and quantitatively close. The
mean discrepancy (variance) between the calculated
collision integrals and tabulated values! is, respectively
0.8% for @1-D*Cand 0.6% for @(2-2)*0as T* varies from
0.1 to 100 and d,,,, varies from 0 to 2.5. The correction
factors fy and fp in Egs. (1) and (2) exceed unity by a
value less than 0.8% in the entire ranges of T* and 8,y.
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Fig. 1. Collision integral averaged over molecular orientations
that determines diffusion of polar molecules as a function of
reduced temperature for different values of the dipole=dipole
interaction. The curves with larger values of 8y, lie above the
curves with smaller &,,.
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Fig. 2. Collision integral averaged over molecular orientations
that determines viscosity of gas of polar molecules as a function
of reduced temperature for different values of the parameter of
dipole—dipole interaction. The curves with larger values of .
lie above the curves with smaller &y, ,y.

Based on the calculated results, we have constructed
the following algebraic approximations of the viscosity
and diffusion coefficients:
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10g Nappr = {@1 log T* + by + (ay log T* + by) (Olog T*0/¢)"}/[1 + (Olog T*0/¢)"];

X = 6]'[1}1)(7

ay = 0.7247422 — 5.655572 01073 x — 2.7576455 (1073 22 + 6.0319724 01074 &3
— 4.3094133 107 x4 + 1.0436741 01076 x5 — 0.25886413 /[1 + (O — 0.573634470,/1.2445309)1.6227661]

as = 0.5267300 — 0.1085746 x + 0.0295374 x2 — 2.744741 01073 x3 + 9.083092 010> x4 —
— 3.141767 01077 x5 — 0.3195205 /[1 + (x,/0.7709013)2];

by = 0.9420289 exp [~ (x,9.016335)0-7853031] + (.2123226 x /[1 + (x,/0.9221603)2-16481] — 1,900440,

by = = 1.510562 + 1.597350072 x — 2.04529200072 x2 + 2.664993 01073 x3 — 1.160109 01074 x4 +
+6.793047 1077 x> + 0.4415847 /[1 + (x/0.6668185)3.772842];

c = 2.873601 — 1.8226866 01072 x — 1.1059057 /[1 + (x,/0.61982071)2.1703422] —
- 0.63683164,/[1 + (O — 2.051953400,/2.3517048) 1. 781408] —
- 0.8709687 /[1 + (O — 8.10700840,/8.8435919)2-1515749];

n = 1.885564332 + 0.7557933802 x — 0.2704320299 x2 + 6.37128014 01072 23 — 5.86250287 01073 x4 +
+1.291786853 01074 x5 + 8.517075478 01076 26 — 3.47866534 01077 7 +
+ 1948.879525 x10 exp [— (x,/0.2675743746)2].

Dyy =\[KT /m Dy (T*, 8pa) /(05 1n); (14)

1og Dappr = {ay log T* + by + (ay log T* + by) (log T*0/c)"}/[1 + (Olog T*0/¢)"];

ay = 0.5607221 — 0.1045448 /(1 + (O — 0.55198680,70.8608552)2-105597) +
+0.0610949 x — 0.01133582 x2 + 0.001028817 3 — 4.594191 1075 x4 + 8.10626 1077 x5,

ay = 0.36931455 — 0.04179245 x + 0.029561990 x2 — 0.6602176 1072 x3 +7.1451886 (104 x4 -
— 3.7876797 0107 x> + 7.8073647 01077 6 — 0.14027412 /(1 + (x /0.69408058)2);

by = 0.9558057 exp [~ (x,/9.222500)0-8158828] +0.1589620 x /(1 + (x/1.105653)2-325833) — 1.794677,

by = — 1.360751 — 0.0435378 x + 0.821021 01072 x2 — 0.1315467 01072 «3 +
+1.202311 01074 x4 — 3.682373 01076 x5 + 0.3800890 /(1 + (x/0.7984236)3.056603).

¢ = 1.469084 + 0.1006964 x — 0.0444112 x2 + 0.01196448 x3 — 0.1459229 01072 x4 +
+8.005541 0107 x> — 1.630008 01076 x6 — 0.3907924 /(1 + (x/0.6409462)3-198427);

n = 2.0804220 — 1.2180876 x + 0.99333563 x2 — 0.26975727 x3 + 0.03769358 x4 —
—0.28385368 01072 x> + 1.0982147 01074 x6 — 1.720156 01076 x7 + 1.3481912 x /(1 + (x,/0.91679324)2).

Approximations (13) and (14) are valid as T*
varies from 0.1 to 100 and J,,, varies from 0 to 15.
Their standard deviations from the exact calculated
values are 0.5%, and this discrepancy is sufficient for
quantitative processing of data. At 8y, = 0 Egs. (13)
and (14) describe viscosity and diffusion of nonpolar

gases based on the Lennard—Jones potential of
intermolecular interaction.

Processing of experimental data® using the
temperature dependence of water vapor viscosity at
atmospheric pressure [Eq. (13)] and the least squares
method at the given dipole moment of the HyO molecule
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d = 1.85 D yielded the following values for parameters of
the Lennard — Jones potential: €,/ k=3521.2 K,
0p = 2.551 A (8.« = 1.433), which well agree with the
results obtained by fitting ! the same experimental data:
g9/ k=506 K, 09=2.71 A (8, =1.2).
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