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We discuss the emission spectra of natural underlying surfaces measured from an airborne
platform. The spectra were measured with the resolution about 0.07 pm in the wavelength range from 2
to 5.5 pm. The principal components of the covariance matrices of logarithms of spectral brightness are
calculated for two types of the surface: clouds and the ground. It is shown that the subspaces of principal
variations in the spectra of the surfaces of both types are close to each other. The spectral behavior of
principal components is briefly interpreted, as is its relation to the physical factors that influence the

radiative field.

The emission spectra of natural underlying surfaces
in the 2 to 5 um spectral range depend on many
physical factors, and both the solar and thermal
components of these emission contribute significantly to
radiative properties in this transitional region of the
spectrum. The multicomponent character of the spectra
necessitates the wuse of experimental methods of
determination of the principal components of the
spectrum variations.

In this paper we analyze the spectra of natural
surfaces, inferred from airborne measurements made
between 0.15 and 10 km altitudes using a SP-102
airborne spectrometer! in the wavelength range 2 to
5.5 pm with the spectral resolution about 0.07 pm. The
spectra  were recorded during level flights over
homogeneous (if possible) natural objects.

The diversity and random character of multiple
factors influencing the spectra of outgoing radiation in
the wavelength range 2 to 5 um necessitates the use of
statistical description of the variations in the spectrum.

This paper presents the results of analysis of
principal components of covariance matrices of spectral
brightness; for a convenience, the spectra are treated
in the logarithmic representation. In the wavelength
range from 2 to 5.5 pm studied here, the dynamical range
of brightness at the spectral resolution of 0.1 pm spans
several orders of magnitude. When the logarithmic
representation is used for analysis of the structure of
variations of the entire spectrum, at a set of wavelengths,
the levels of wvariations, differing by an order of
magnitude, can be readily adjusted, and so the variations
of the shape of the entire spectrum can be clearly
visualized.

The specific feature of spectral data analysis is that
all spectral components of a realization have same
dimensionality, and so one can use the eigenvectors and
eigenvalues of covariance matrices to analyze the
structure of the covariance. In analysis of
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multidimensional data, in which different components
of a realization have different dimensionality, the
eigenvectors of only the correlation matrices have a
sense, while those of the covariance matrix do not (see,
e.g., Ref. 2).

For analysis of internal structure of covariance,
the experimental spectra were classified into two
representative ensembles, namely, clouds and the
ground. For these, the eigenvalues and eigenvectors of
sample covariance matrices of logarithms of spectral
brightness were then calculated.

The eigenvectors of a covariance matrix define a
certain direction in space of logarithmic brightness
spectra. (By definition, the eigenvector u of the
covariance matrix S satisfies the equation Su = uA,
where A is the eigenvalue corresponding to the vector
u). In the case considered here, they define directions
in 34-dimensional space. Their main distinctive property
is the lack of correlations between projections of the
spectra (from here on, the spectra are treated on log
scale) on the directions corresponding to different
eigenvectors of the covariance matrix.3 Every eigenvector
is orthogonal to a subspace defined by all the other
vectors. Thus defined, the eigenvalues corresponding to
eigenvectors of a covariance matrix represent the variances
of the projections of spectra onto the eigenvectors.3 For a
convenience, these vectors are normalized and, as such,
have unit lengths.

Table 1 presents eigenvalues of sample covariance
matrices for background ensembles of clouds and ground
surfaces. The eigenvalues and the corresponding
eigenvectors are given in the order of decreasing
eigenvalues.

The eigenvalues were calculated iteratively by
Hotelling method4 using specially written computer
program® because the existing computer codes for
calculating the eigenvectors do not provide required
accuracy of computations.
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Table 1
Accumulated sum
Vector Eigenvalues of first as a fraction
number eigenvalues of trace
Clouds [Ground| Clouds | Ground | Clouds | Ground
1 13.055 7.8371 13.055 7.837 0.558 0.428
2 4.9741 4.8514 18.029 12.688 0.770 0.692
3 1.4441 21522 19.473 14.841 0.832 0.810
4 0.9779 0.8629 20.451 15.704 0.874 0.857
5 0.7104 0.7455 21.161 16.449 0.904 0.898
6 0.5899 0.6151 21.751 17.064 0.929 0.931
7 0.4641 0.3351 22.215 17.399 0.949 0.949
8 0.2705 0.2041 22.486 17.603 0.960 0.961

9 0.2172  0.1644 22.703
10 0.1728 0.1473 22.876
1 0.0916  0.097 22.968
12 0.0825 0.072  23.050
13 0.0793 0.063 23.129
14 0.0728 0.047 23.202
15 0.0538 0.030 23.256
16 0.0345 0.0277 23.290
17 0.0243 0.0177 23.315
18 0.0201 0.0124 23.335
19 0.0157 0.0087 23.350
20 0.0130 0.0077 23.363
21 0.0078 0.0057 23.371
22 0.0073 0.0052 23.379
23 0.0064 0.0043 23.384
24 0.0050 0.0036 23.390
25 0.0044 0.0029 23.394
26 0.0036 0.0024 23.398
27 0.0029 0.0019 23.401
28 0.0038 0.0017 23.404
29 0.0021 0.0011 23.406
30 0.0017 0.0010 23.407
31 0.0014 0.0008 23.409
32 0.0011 0.0006 23.410
33 0.0009 0.0005 23.411
34 0.0007 0.0002 23.412

17.768 0.969 0.370
17911 0.977 0.977
18.008 0.981 0.983
18.080 0.985 0.987
18.143 0.988 0.990
18.190 0.991 0.993
18.220 0.993 0.994
18.248 0.995 0.996
18.266  0.996 0 997
18.278 0.997  0.997
18.287 0.997  0.998
18.294 0.998 0.998
18.300 0.938 0.999
18.305 0.999  0.999
18.310  0.999  0.999
18.313  0.999 0.999
18.316  0.999  0.999
18.318 0.999 1.000
18.320 1.000 1.000
18.322  1.000 1.000
18.323 1.000 1.000
18.324 1.000 1.000
18.325 1.000 1.000
18.326  1.000 1.000
18.326  1.000 1.000
18.326  1.000  1.000

The computations are difficult in that the sample
covariance matrices are close to degenerate ones while,
at the same time, they are not such with the unity
probability.6 For instance, for clouds the smallest
eigenvalue is 0.0007449, i.e., about six hundred
thousandths of the maximum eigenvalue. The need for a
special codes to calculate eigenvalues was also
motivated by large dimensionality of realizations and,
hence, covariance matrices.

It can be seen that, on the whole, the eigenvalues
rapidly decrease as the eigenvalue number increases (see
Table 1). The eigenvalues have the meaning of
variances of projections onto the eigenvectors, and
these projections for different vectors do not correlate;
therefore, the sum of eigenvalues, or the trace of a
covariance matrix, serves as a certain accumulated
measure of spectrum variability. From the accumulated
sums presented in Table 1 it can be clearly seen that
the total spectrum variations mostly consist of
variations in the directions of only a minor part of all
the 34 vectors. Even variations of projections onto the
direction of only first vector are 55 and 43% of the
trace for clouds and ground, respectively. Projections of
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only first three vectors account for over 80% of the
total variance. Five first eigenvalues account for 90% of
the trace of the matrix, for first eight vectors this
amounts to already 96%, and variations in directions of
first 14 vectors account for over 99% of the trace.

The last vectors have associated with very small
variances of projections of realization from the sample
(see Table 1). The fact that projections onto last
vectors are stable suggests that they are orthogonal
both to directions of variations of the signal, and to
directions of variations of the noise (indicating that the
noise components are spectrally correlated).

Seemingly, the directions of principal signal
variations correspond to first vectors since the mean
level of variance of the noise (of the order of 0.02) is
small compared with first eigenvalues, and since the
fraction of noise projection onto first eigenvalues, even
for strongly correlated noise, is much less than the
variance of variations of useful signal.

The direction cosines of first eight vectors are
plotted in Fig. 1 for the cloud ensemble and in Fig. 2
for the ground one. (For the sake of brevity, the words
direction cosines will be omitted in the below discussion,
and just plots of vectors, or vectors, will be used instead
of plots of direction cosines of vectors. By direction
cosines of a vector in its geometrical interpretation we
mean simply the values of its components, since all the
vectors are appropriately normalized).
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Fig. 1. Eigenvectors of sample covariance matrix of logarithms of
spectral brightness of clouds. Numbers at the curves indicate
the vector numbers.

From Figs. 1 and 2 it is seen that the first vectors
are rather smooth, and that the both the rate of
oscillations and the number of zero crossings increase
with the growing vector number. Each of the vectors, as
a rule, is not attributable to spectral manifestation of
any single physical factor influencing the spectrum, but
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rather it reflects a combined effect of a set of factors.
This is because both the factors themselves and their
influence on the spectrum correlate. Nevertheless, some
vectors can certainly be attributed to some dominating
factor. For both ensembles, the first vector (Figs. 1a and
2a) reflects the principal energy variations in the
spectrum, primarily associated with variations of
scattered solar radiation reaching the device. However,
even this primary effect, associated with the first vector,
is distorted somewhat because of a complex relationship
between the conditions of observations and variation’s
variances of different levels for different wavelengths.?
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Fig. 2. Eigenvectors of sample covariance matrix of logarithms of
spectral brightness of the ground. Numbers at the curves
indicate the vector numbers.

The correctness of this interpretation of the first
vector is confirmed by Table 2, which gives the
correlation coefficients of projections onto the first
vectors with the parameters characterizing the
observation conditions. In Table 2, H is the flight
height; P is the pressure at the flight height; T is the
temperature of the atmosphere; /%y is the viewing angle;
h is the solar elevation angle; ¢ is solar azimuth angle;
and vy is the scattering angle. In particular, for clouds
that, on the average, produce much higher solar
radiation background than other backgrounds, the
projection of the spectrum onto the first vector is
strongly correlated (in the absolute value) with the
scattering angle (see Table 2).

The second vector for clouds characterizes
variations in thermal emission of the clouds. Since most
of the measurements were made at a low height above
the clouds, the recorded air temperature well correlates
with the cloud top temperature; while a weaker
correlation was found between flight height /pressure
and temperature of the emitting part of the clouds. This
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most clearly manifested itself in that the projections of
the spectrum onto the second vector much closer
correlate with temperature than with the altitude and
pressure (see Table 2).

In the ground ensemble, the projection onto the
second vector also strongly correlates with the air
temperature and, moreover, its correlation with height
and pressure is no weaker than with the temperature. The
spectral behavior of direction cosines of the second vector
for ground ensemble (see Fig. 2a) strongly differ from
that of the cloud ensemble. This is because the spectral
brightness in the ground ensemble depends on the flight
height and air temperature at this height only in the
regions of atmospheric gas absorption bands and slopes
of these bands, primarily since only in these spectral
intervals the sensor receives thermal radiation emitted
by the atmosphere, and does not records surface emission.
The difference in the shape of the second eigenvectors
of both ensembles thus reflects the difference of the
spectral coefficients of correlation between logarithms
of brightness and temperature. On the contrary, the
vectors with large numbers are not amenable to such a
simple physical interpretation. Only for particular
vectors the spectral behavior of their direction cosines can
be explained quite straightforwardly.

For instance, the third vector in the ground
ensemble (resembling somewhat the second vector of
cloud ensemble) can be interpreted as the contrast
between logarithms of brightness in the slope regions of
the 2.6-2.8 um water vapor and carbon dioxide
absorption band and logarithms of brightness in the
thermal and shortwave regions.

The fifth vector of the ground ensemble is seemingly
associated with the brightness contrast in the 4.3 pum CO,
absorption band and in the neighboring relatively
transparent windows. For clouds, whose temperature
correlates with the air temperature, this contrast is
much lower and so it is only apparent in ninth and
tenth vectors. Spectrally, they behave similar to the
fifth vector of the ground ensemble. Cosines of the
angles between fifth vector of the ground ensemble and
ninth and tenth vectors of the cloud ensemble were
0.528 and 0.523, respectively.

To compare principal directions of spectrum
variations in cloud and ground ensembles, we
calculated the cosines of angles between eigenvectors of
these ensembles. Table 3 gives scalar products of first
eight eigenvectors of ground ensemble (see Fig. 2) and
eight vectors of cloud ensemble (see Fig. 1).

The entries of Table 3 can be considered as the
coordinates of the eigenvectors of ground ensemble in
the coordinate system coinciding with the eigenvectors
of cloud ensemble (and vice versa). From Table 3 it is
seen that the first vectors of both ensembles are very
close (their scalar product is 0.814). The second vector
of the ground ensemble is close to the third vector of
cloud ensemble, while third vector of the ground
ensemble is close to the second vector of the cloud
ensemble (cf. Figs. 1a and 2a).
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Table 2. Coefficients of correlation between projections onto eigenvectors
and parameters characterizing observation conditions

Background| Vector Parameter
type number H P T hy h | 'y | y
1 -0.199 0.249 0.220 0.248 -0.108 0.644 -0.713
2 -0.557 0.568 0.787 0.103 0.190 0.051 0.063
3 -0.229 0.183 0.090 -0.187 -0.320 0.075 0.012
Clouds 4 —0.258 0.250 0.278 —0.025 —0.124 0.076 0.036
5 0.028 —-0.015 —-0.020 0.048 0.003 -0.109 —-0.108
6 -0.110 0.110 0.163 —-0.005 -0.027 —0.022 —0.042
7 —0.034 0.070 0.213 -0.122 0.044 —0.086 —0.023
8 —0.024 0.033 —0.030 -0.233 0.026 —0.051 -0.073
1 -0.169 0.153 0.205 —0.282 0.570 0.014 0.341
2 —-0.868 0.880 0.872 0.297 -0.273 -0.179 -0.055
3 0.138 -0.116 -0.127 0.229 —0.212 —0.265 —0.381
4 0.054 —0.045 —-0.052 0.085 0.176 0.351 0.271
Ground ] .
5 0.330 —-0.300 -0.359 —0.438 0.083 0.210 0.322
6 -0.120 0.100 0.078 -0.074 0.192 —0.181 0.041
7 0.040 -0.059 -0.027 -0.134 0.030 -0.073 -0.014
8 0.031 —0.042 0.017 0.201 0.049 0.099 —0.064
Table 3. Scalar products of eigenvectors of sample covariance matrices
of logarithms of spectral brightness of clouds and ground surface
Type of Vector Clouds
background | number 1 [ D) | 3 | 4 | 5 | 6 [ 7 [ 8
1 0.814 0.450 —-0.206  —0.029 0.025 -0.07 0.049 0.224
2 0.095 0.272 0.724 0.322 0.359 0.267 0.123  —0.207
3 0.511 -0.715 0.288 0.161 —-0.277 0.015 0.002 0.001
Ground 4 0.067 —0.266  —0.382 0.458 0.661 —-0.056 0.313  -0.070
H) 0.114 0.087 0.067  —0.248 0.037 —0.206  —-0.060 —0.464
6 0.031 0.025 —0.384 0.249  —0.157 0.686 0.375  —-0.196
7 -0.125 0.270 0.048 0.690 —0.471 -0.262  -0.190 0.080
8 0.111 0.170 0.006 —0.122  -0.072 0.249  —0.655 —0.194

Overall, we can note the closeness of subspaces
defined by first three vectors of both ensembles. (For
both ensembles, sum of the first three vectors accounts for
over 80% of trace of the covariance matrix). Since each
vector has unit length, in any orthogonal Cartesian
coordinate system the sum of squares of its direction
cosines is identically unity. The sum of the squares of
first three direction cosines of the first vector of the
ground ensemble is 0.908 in the coordinates of the
eigenvectors of cloud ensemble, implying that this
vector lies almost totally in the subspace defined by first
three vectors of the cloud ensemble. For the second and
third vectors of the ground ensemble, these sums were
found to be equal to 0.607 and 0.855, which also suggests
the closeness of subspace of first three vectors for both
ensembles.

With regards to the subspace of the first eight
vectors of the cloud ensemble, the first eight vectors of
the ground ensemble lie almost totally in this subspace,
except for the fifth vector which, as was already noted
above, is close to the ninth and tenth vectors of the
cloud ensemble.

The closeness of subspaces of principal spectrum
variations of both backgrounds originates from the
similarity of physical mechanisms and, hence, from
resemblance of the responses in the spectra of main
factors influencing the spectrum.

Analysis made indicates that the variability
domain of the spectral brightness is spectrally bounded
in multidimensional space, and that these domains are
close for different backgrounds; which may be
significant for the development of concise methods of
spectrum description.

We conclude by noting once again that the choice
of representation of spectrophotometric data is very
important for analysis of the covariance structure. The
use of logarithmic scale, in particular, had allowed us
to study the structure of variations in the spectrum shape.

On the other hand, the variances of the absolute
spectral brightness are proportional to the mean
brightness values by virtue of the lognormal distribution
of the spectral brightness (e.g., see Refs. 8-10).
Therefore, analysis of brightness itself gives a trivial
result that the principal variations are concentrated in
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the spectral region where the mean brightness is high.
In particular, the variance of projections of brightness
spectrum, on a linear scale, onto the direction of the
first vector for the cloud ensemble is 94.4% of the
trace. At the same time, the cosines of the first vector
are proportional to the mean spectrum. Thus, when the
variations of the absolute spectral brightness are
considered, the method of principal components virtually
provides information only on the integrated characteristics
of the brightness spectrum.

This situation, seemingly, is typical for analysis of
quite a wide range of spectral data sources; which is
supported by many studies dealing with analysis of
eigenvectors of covariance matrices (see, e.g., Refs. 11—
13). All of them indicate that almost all variance in the
spectrum is associated only with variations in
direction(s) of one (two) eigenvectors of the covariance
matrix.

In our case, the use of logarithmic scale of
brightness measurements had allowed us to perform
meaningful analysis of the structure of spectral
covariance, in particular, via calculation of eigenvalues
and eigenvectors of the covariance matrices.

The covariance structure has proven physically
informative; so it is advisable to consider the possibility
of using this structure for different practical
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applications and, in particular, to construct imitation
model for brightness spectra of natural underlying
surfaces in the 2 to 5.5 pm wavelength region.
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