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An optimum approach to smoothing the profiles of atmospheric parameters measured in the
photon counting regime is proposed in the paper. The application of the generalized method of least
squares is substantiated as well as of the choice of the order of a linear model and of the validity
criterion for a priori setting the variance profile. A possibility purposefully setting the window of moving

average is discussed.

Introduction

Investigations into the atmospheric processes
related, for example, to changes in radiation, cyclonic
activity, etc., by means of lidar sounding have become
possible up to the height of the tropopause. In so
doing, vertical profiles of a number of parameters
(signals) to be studied are experimentally measured.
The difficulties that may arise in processing the
measured signals are the following: statistical properties
of the physical processes under investigation are not
known exactly and are different at different altitudes.
Besides, the contribution of noise to useful signal is
non-uniform and significantly increases with the
increasing sounding distance. The subsequent nonlinear
transformations make the problem of smoothing the
measured signals more difficult.

The problems of the type, when the noise
properties and its contribution to the measured signal
are known, but the statistical properties of the physical
process itself are studied insufficiently, are mainly
reduced to the use of classical method of least squares
or, in less frequent cases, to Backus-Hilbert smoothing
method, Tikhonov method, etc.!™3 The method of least
squares (MLS) attracts attention, first of all, by
simplicity of its realization,4 for which it is enough to
have the medium-power calculation facilities. As a rule,
smoothing is performed by means of the moving
average, i.e., a smoothing interval slides along the
signal. An optimum approach to the problem of
smoothing of the profiles of measured atmospheric
parameters is considered in this paper as applied to
processing the return signals of the Raman scattering
channel obtained in the photon counting mode at the
Siberian Lidar Station.

1. Statement of the problem
Most commonly sounding of the atmospheric

parameters is as follows: a short laser pulse is
transmitted into the atmosphere, the radiation

0235-6880,700,/08 702-05 $02.00

backscattered from the atmosphere is collected by a
receiving mirror to the photoelectric converter and then
enters the recording device in the form

Y() = 45 Iy KG() 272 Bl T + @), (1)
where
) g - O
T°(x) = exp [T 2 J e(x) dx'[]; (2)
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Y(x) is the recorded signal, A is the area of the
receiving mirror, ¢ is the speed of light, T is the laser
pulse duration, I is the laser radiation power, K is the
total lidar transmission coefficient; G(x) is the
geometrical function of the lidar, x is the distance,
Br(x) is the volume coefficient of backscattering, €(x)
is the extinction coefficient, and g(x) is the noise.

The lidar equation (1) was obtained taking into
account the following approximations:

(1) atmospheric processes are considered in the
single scattering approximation;

(2) the state of the atmosphere does not change
during the measurement time;

(3) the sounding pulse duration does not exceed
10-20 ns;

(4) parameters of the sounding device are
supposed to be constant during the whole measurement
cycle.

In the photon counting mode, the signal is
accumulated as a response from a certain number of
sounding pulses. The path of sounding is divided into
the fixed number of range intervals of the length Ax.
The  histogram-like  profile of the measured
characteristic, as function of distance from the source
can be written in the form

x,¢+2

Y(x) = ANgK J G(x) 2% Br(x) TH(@)dx + q(xy), (3)
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where 1 is the strobe number, and
1 .
xi=AxH+§H G=1, ..., 2); (4)

Ny is the total number of the emitted quanta.

The probability of recording the photoelectron
within an interval for the Raman scattering signals is
significantly less than 1 per 1 laser shot, then the
statistics of photocounts, that in the general case is
described by the binomial distribution, is considered in
the approximation of a Poisson process, for which, as is
known, the mean value is equal to the variance.

Thus, one can determine the noise variance profile
g(x) from the measured signal. The statistics g(x) for
the mean value greater than 9 is satisfactorily described
by the Gaussian probability distribution.>

Assuming that physical processes in the
atmosphere are described by smooth functions, let us
pass, for the convenience of subsequent consideration of
the smoothing problem, from the histogram
representation of signal to the following one:

Y(x) = f(xp) +qlxp), G=1, ..., 2), (5)

where f(x;) is the signal without the noise described by
the smooth function; ¢(x;) is the random noise
described by the normal distribution with the zero
mean value and the variance 02(x;); x; is the distance
to the middle of the ith strobe.

If the signal has wundergone a nonlinear
transformation, the transformed profile of the noise
variance g(x) is determined by first terms of the Taylor
series:

2z Z%L(mg 200, (=1, ) ), (6)
0“(x;) = P o,x;), =1, ..., 2),
7 Ooy; J

where the transformed profile Y(x)=Y(Y{(x),...,
Y i(x)); Y}(xl-) are the measured signals, Oﬁ(xi) are the
corresponding profiles of the noise variance.

Thus, the problem of smoothing noisy signals is
stated as follows: assuming that the contribution of
noise to the measured or transformed signal Y(x) of the
form (5) is known, it is necessary to reconstruct the
signal f(x) without noise by means of the optimal
algorithm and to estimate accuracy of the
reconstruction.

2. Synthesis of the algorithm

As a rule, f(x) is determined as a linear
combination of basic functions. The basis for selecting
the basic functions is the circumstance that the closer is
the properties of the basic function to the sought one,
the more stable and quick is the solution.

Let us represent f(x) in the form of a linear
combination of the known basic functions ¢4, ..., ¢,,:
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V=3 i b;. @)
=1

Then

m

Y(Xi) = Z Cj (I)]‘(xl‘) + q(xi), (=1, ..,2). (8

=1

Formula (8) is called in statistics the linear
model, the number of basic functions m is called the
order of the linear model.

The method of least squares (MLS) has the
optimal properties among the algorithms for smoothing
used for finding the order of the linear model and
coefficients c;.

The MLS—estimates 8j of the parameters c; are
determined from the condition

2

min Q = 5 w %Y(xi) -3¢ ¢]-(xi)% , 9
=1 O i=1 d

where w; = 1/0'2(961'), for which, according to the
condition of minimum, one has that

00 )

60]-:0’ G=1, .., m), (10)
which, in its turn, leads to the linear system of
equations® relative to ¢

m—1
ZC]‘ bl]':gl? (l=0,...,m—1), (11)
j=0

where

z z
by =% o Pxy) Pixp); gr= 3 w Y(x) Pilxy).
=1 =1
In the case when the errors are normal, the MLS—
estimates 5]- of the parameters c¢; have the following
properties:
(1) the estimates 8]- are not biased, consistent, and
effective;

(2) the estimates 8]» are the estimates of the
method of maximum likelihood;
(3) the random value or the residue

z m 2
0=5 w %Y(xi) -y 8]' (I)]'(xi)% (12)
=1 O =1 ad

has xz—distribution with n — m degrees of freedom;
(4) the estimates Z‘]- and

z m 2
=1

2=
n—m :
j=1
are sufficient for cj and o°.
The order of the linear model (8) is estimated in

MLS by testing the hypothesis

0 <x2(n—m), (14)
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where Q is the residue of the estimates by MLS with
n — m degrees of freedom; xa(n — m) is the quantile of

the xz—distribution with n — m degrees of freedom and

significance level a. If the hypothesis has been rejected,
m

the linear combination V =} cj d)]-, is increased by 1
=

starting from m = 1, then the residue Q is calculated

again, and testing of the hypothesis is repeated until

accepted.

For practical applications, the values X%.Os(n - m)
with the significance level 0.05 at the number of
degrees of freedom equal to 3 is found with the
accuracy of 2% by the approximate formula from Ref. 6:

Xé.os(n —m) D% (\/2(71 —m) - 1+1.65)°. (15)

In the case when the a priori data on the profile
of the variance of the error are not accurate, the
iteration procedure is to be applied lying in testing the
hypothesis on the equality of the variance of the errors
before smoothing to the MLS—estimate of the variance
after smoothing by use of the dispersion relation using
the F—criterion:

%§< Fqo(8, 8, (16)
where Q is the residue of the previous estimate by MLS
with 6 degrees of freedom; Q' is the residue of the
subsequent estimate by MLS with 6 degrees of
freedom; Fq(0,0") is the quantile of the Fisher—
Snedecore distribution with the level of significance a
and the degrees of freedom 0 and 6'.
If the hypothesis has been rejected, the value

n2(x) = 6*(x) Q' /@' 17)

is accepted for the next iteration as an estimate of the
variance, where 0%(x) is the initial @ priori data on the
profile of the error variance.

If the basic functions are orthogonal, i.e.,

z

> o ¢/(x;) ¢;(x;) =0 at [ #j, one can diminish the
=1

bulk of calculations. One can construct the basic
functions based on the power-law basis, that realizes
the orthogonal transformation of the system of linear
equations (11). Then, when determining the order of
the linear model, the coefficients at the orthogonal
basic functions in expression (14) are not recalculated,
but remain the same and are calculated only for the
added orthogonal basic function.

The number of basic functions, as well as the
accuracy of reconstruction is determined by the value of
the smoothing interval. By the interval of smoothing we
mean the number of signal readouts selected, or the range
interval, in which the signal behavior is considered. The
greater the smoothing interval, the higher the degree of
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polynomial can be needed for describing f(x) in
approximating over the power-law basis.

Optimum approach in this case is in using the
moving average, when a small interval of smoothing
moves along the measured signal. The values of thus
smoothed function are taken as the values at the center
of the interval. As a rule, when determining the order
of the linear model on the selected interval, when the
order of the linear model m has exceeded the value of
10—12 or has approached the value of the interval of
smoothing, one decreases the trial interval of smoothing
n by 1 and repeats the calculations.

Let us consider the selected interval of smoothing
on the sounding path. For a convenience of
consideration, let us move the origin of the coordinate
system to the center of the trial interval of smoothing
[ v, v] of the size n, consisting of integers, where
v=(m-1)/2, and n is an odd number.

If the functions ¢4,...,9,, are the Chebyshev
orthogonal polynomials Py, ..., P,—1, the moving
average can be presented in the following form:

m
Z Scj P](x3+1) + q(x5+i)y
j=1

(s=1+v, .. 2z—

Y(x§+i) =

V,i=—V, ..., V), (18)

where the index s determines the current position of the
center of the trial interval of smoothing in moving
average; 1 is the inner index of the interval of smoothing.

The linear system of equations corresponding to
the condition (9) is the following:

m—1

Y scisby =3¢, (I=0,..,m-1), (19
=0

where

v
Sbyj = Y Wy P Pilag);

==V
Y
g1 = z Wor Y gyi) Prxsry); (20)
i=-v

Sy =0 at [#].

The estimates SE]- can be found from the expression

v v -1
=S @ Y Pilayes) @z W P?(xm)% e
i =-v

1=-V

The residue Q is calculated by the following
formula:

v m—1 \Y
Q= 3 Wy Yre) = Y07 T @y Pirgy). (22)
i=-V 7=0 i=-v
The orthogonal  polynomials — Pp(x.;)  are
calculated in the case of equidistant points x; using
recursion relationships

po(x3+1) = 1,
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v
.k
Z Wy ] Pk*1(xs+]')
j=Vv

Pplags;) = i — Py (i) = oo —

\Y
2
Y Wy Ppog (i)

j=v

\
z ms+j ]k P()(-xs-%—]’)
Jj=Vv

- Py(xgei). (23)

v
2
Z s+ PO(x.s+]')
J=V

The confidence boundaries of the estimate of the
smoothed signal have the form

W) = tp Dagsi), (24)

where tp is the quantile of the Student distribution
with n —m degrees of freedom, corresponding to the
confidence probability P,

m—1 \Y i1
Alxgry) = \/ > P?(xsﬂ') QZ Wt P?(xﬁk)% . (25)
=0 S_—

As a result, the smoothed signal takes the form

m—1
Z SE] P](x§+l) + Lp(x5+i)y (26)
=0

f(x3+i) =

where i depends on the position of the interval of
smoothing in the moving average on the initial
signal (5).

(1) If the interval of smoothing has been placed at
the beginning of the signal, s =1 +v, then f(xg,) is
calculated in the interval i=-v, 1 —v, ..., 0.

(2) Then, at 1 +v <s <z -V the values f(xg;)
are calculated only for i = 0.

(3) If the interval of smoothing has been placed at
the end of the signal, s =z — v, then f(x,;) is calculated
in the interval 1 =0, 1, ..., v, where, as before, the index
s indicates, in what place of the initial signal (5) the
center of the interval of smoothing is.

One can replace Eq. (25) with an approximate
one, if taking into account the fact that the interval of
smoothing 7 can be set a priori8 so that the confidence
boundaries of the estimate of the smoothed signal
remain constant along the signal.

A(x) Oo(x) \/m/n O const, Q7

wherefrom one can derive the formula for setting the
value of the trial interval of smoothing

nOm 02(x)/03, (28)

where 05 is the initial condition for the variance of the

smoothed signal, and m is the a priori value of the
order of the linear model.
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3. Results of the numerical simulation

Figure 1 demonstrates the material discussed
above by use of an example of smoothing a model
signal (points in the figure) consisting of 400 readouts.
The model signal was constructed so that one can show
the characteristic peculiarities of operation of the
algorithm for smoothing. The presence of an
inhomogeneity with the steep fronts of the signal was
simulated on the smooth signal. Then the random noise
was added to the signal so that the noise variance
increases by three times by the end of the sounding
path. The trial interval of the moving average (curve 2)

was set equal to n 00%(x) / 05 in order that boundaries
of the smoothed signal remain approximately constant.
When the interval of smoothing has passed through the
boundaries of the inhomogeneity, the order of the linear
model (curve 1) increases reaching 10, for that reason
the interval of smoothing decreases. The interval
decreases so that the curve adjusted on this part of the
signal is described by the number of parameters no
more than 10. The increase of the order of the model to
more than 10—12 is not effective from the standpoint of
both physical prerequisites and accumulation of the
rounding-off errors in calculations. The result of
smoothing the model signal is shown by curve 3.

6.5
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w w
T T T T
A

=
T

w
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.
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0 20 40 60 80 100
Model profile, rel. units

Fig. 1. The moving smoothing of the model profile by MLS:
order of the linear model (7), width of the smoothing
window (2), points that show the model profile (4), and the
result of smoothing (3).

Conclusion

The results of numerical simulation confirm the
validity of selection of the optimum algorithm for
smoothing the lidar sounding signals. Representation of
the measured signal in the form (5) makes it possible to
apply the generalized MLS without additional
suppositions about the statistical properties of the
signal. The signal is considered as a consecutive series
of equidistant readouts of a varying accuracy. Moving
smoothing makes it possible to optimally use the
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calculation resources. The possibility of varying the
value of the interval of smoothing allows one to keep
the confidence boundaries of the smoothed signal in the
prescribed limits.

The proposed optimum technique is applied to
processing the results of lidar sounding in the Raman
scattering channel of Siberian Lidar Station of IAO SB
RAS.
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