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Propagation of laser radiation with partial spatial coherence in a laterally bounded optically
inhomogeneous extended gain medium is studied by use of quasi-optical equation for a transverse
correlation function of field amplitude. The approach used allows for the radiation diffraction, refraction
on a regular profile of dielectric constant, regular gain, scattering by fluctuations of dielectric constant
and gain, scattering by random axial (hose-type) displacements. It is shown that fluctuations of the gain
coefficient lead to additional regular gain of spontaneous emission, which dominates over the scattering
by the fluctuations. Under the condition of small-scale hose-type fluctuations and low amplification
within their longitudinal correlation length, fluctuations of the gain coefficient can hardly affect the
intensity of amplified spontaneous emission, whereas their effect on coherence can be stronger.

1. Introduction

Propagation of radiation in a laterally bounded
medium has some salient features as compared with the
case of statistically homogeneous medium (for instance,
in free propagation in the atmosphere) depending on
boundary conditions at the side surface. For instance,
in the case of an extended freely spreading amplifying
plasma filament, radiation that passes through the side
surface of the filament cannot take part in scattering
and refraction processes and come back to the plasma
channel. However, it can significantly contribute to
output distribution of the radiation intensity. With the
increase of spontaneous (spatially incoherent) radiation
in a randomly inhomogeneous medium, a series of
processes compete that often are antipodal. On the one
hand, spatial selection of radiation in the amplifying
channel leads to improvement of coherence and
sharpening of directional pattern of radiation while, on
the other hand, scattering of radiation deteriorates the
beam’s quality. In addition, this is complicated by the
presence of regular refraction and its singularities,
amplification inhomogeneity, the presence of non-
resonant absorption, etc. This problem has been
thoroughly considered in Ref. 1.

Traditionally, the quasi-optical parabolic equation
for the complex amplitude of the radiation field is used
to describe propagation of partially coherent laser
radiation beams with relatively narrow angular width
in optically inhomogeneous gain media. The method of
classical geometrical optics is inapplicable here and
wave effects must be taken into account, when the
diffraction length of radiation on the cross size of
optical inhomogeneities is comparable with the
propagation path or exceeds it. Realistic situations can
be described by the numerical solution of parabolic
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equation with arbitrary distributions of optical
parameters.2> However, fluctuations of the field of the
source’s radiation make it necessary to perform a lot of
numerical calculations of the parabolic equation with
averaging of the output radiation parameters over time
or ensemble3™ what takes considerable time. If one
takes into account random parameters of the medium,
the method of parabolic equation becomes even more
complicated.

To avoid the problem of averaging over ensemble
of realizations and find the mean energy and coherence
properties of radiation in most simple way, one can pass
from the parabolic equation to the equation for the
transverse correlation function (TCF) of the complex
field amplitude.5-8 When the transverse length of
coherence is much less than the beam diameter, the
TCF-method enables one to obtain the numerical results
much faster as compared with the method of statistical
testing for the parabolic equation.> The TCF-method
was used in studies of the dynamics of spontaneous
radiation in a gain randomly inhomogeneous medium
(see, for instance, Refs. 7, 9—15, and the review in
Ref. 1). Tt is important that the equation for TCF can
be solved not only numerically but, in contrast to the
stochastic parabolic equation, enables one to obtain
analytical solutions and estimates in some cases. This
helps better understanding of the radiation dynamics.

Main results on the dynamics of spontaneous
radiation in an active medium with fluctuations of
dielectric constant, which are similar to usual turbulent
fluctuations in the atmosphere, were obtained in
Refs. 7, and 9—15. Effects of axial inhomogeneity of the
medium, i.e., its random transverse displacements, on
the amplified coherent radiation were considered in
Ref. 16. In this paper, within the frames of the TCF-
method, usual and axial fluctuations of the dielectric
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constant and gain coefficient are taken into account
simultaneously, and their influence on the amplified
spontaneous radiation is compared.

2. The equation for the TCF
and its analysis

Dynamics of radiation in an  optically
inhomogeneous active medium in the quasi-stationary
case is described by the parabolic equation for slowly
varying complex amplitude of the radiation field E:

S 7
%+2ikw+%[s(r,z)—1]‘%55(“2):0’ S

where r = ix + jy is the transverse radius vector, z is
the longitudinal coordinate, %k is the wave number, a is
the gain coefficient for a weak signal (an important
case with nonlinear o is considered in detail in Refs. 1
and 15), € is the dielectric constant (g = 1).

Equation (1) cannot be solved in its general form.
In practice, the direct numerical solution is widely used.
The width of the transverse grid is Ax OA /0, where 6
is the maximum angle of radiation divergence, used in
calculations. If a part of optical inhomogeneities is
significant, the number of calculation points is large,
and the integration step over z Az 0 kAx? is small. For
instance, in the short-wave region, modern calculation
tools enable one to consider only the case of a plane
medium.34 Besides, the obtained solutions of the
parabolic equation should be averaged over an ensemble
of field realizations and field parameters what takes
unreasonably long time for calculations.

To avoid the problem of averaging over the
ensemble of realizations, we obtain the equation for the
second moment of field amplitude, i.e., for the
transverse correlation function (TCF) B = <E(ry, z) %
x E*(ry, z)> from the stochastic equation (1). The
brackets denote statistical averaging. In averaging, we
take into account the presence of two types of random
optical inhomogeneities. The first type corresponds to
“usual“ fluctuations of the dielectric constant and
gain, which are characterized by spatial spectrum,
dispersion, and correlation lengths. These are described
similarly to, for instance, fluctuations of the
turbulent atmosphere. The second type of fluctuations
is connected with random deviations of the
medium (e.g., a plasma filament) as a whole from the
straight-line shape. They can be called axial or
“hose-like“16 fluctuations. Axial fluctuations can be
naturally simulated as the random transverse
displacements of regular profiles of the gain coefficient
and the refractive index. So, we represent € and a in
the form

e(r,z) =€(r + F z) + Q(r,z) ;
a(r,z) =a(r + P,Z) + g(r,z) ,
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where € and @ are the regular components; Eand & are
fluctuation components; p is the random transverse
displacement of the regular profiles € and @. The

fluctuations g, E, o are statistically independent and
have zero mean values. Assuming the axial fluctuations
to have small transverse scale under conditions that

0,€ > L 0%€ and Op@ >> L0243, we obtain

&(r,z) O€(r,2) + F(Z)DDE(I',Z) + g(r, z) ;
o(r,z) O0a(r,z) + p(z)l]gﬁ(r,z) + Q(r,z) ,

where Op is the transverse gradient, L is the root-
mean-square transverse displacement of the medium.

For simplicity, the correlation functions g, gl, and F are
supposed to be Gaussian:

<Q(r1 ,2) Q(rz, Z')>= oé exp [_7’2/21(215 -(z—- 2’)2/21(2,”];
<Q(l'1, z) Q(I'Q, Z)> =
= o exp [-r? /215 - (z - 2% 213, (2)

<) Heys = L2(2) exp [~ (z - z’)2/2Lﬁ],

where 02 and 02, lgny and lgp, Iy and [y are the

dispersion, transverse, and longitudinal lengths of the
correlation E and Q, respectively, L is the longitudinal

length of the correlation ¥ If the longitudinal length of
coherence of the amplified radiation in the medium
significantly exceeds ls”, la”, and L), one can use the

Markovian approximation.!? Within the framework of
this approach, correlations (3) are approximated by
delta functions along z:

<9(r1, z) Q(rQ, 2)>=A(r, 1'; 2) 8z - 2');
<E|(r1, 2) g(rz, 2)>=Au(r, v'; 2) 3z - 2);  (3)
&) Hes = 4,) 8¢ - 2.

By setting equal the integrals over z', with the infinite
limits, taken from the correlation functions (2) to those
taken from Egs. (3), we obtain

Ag(r,r';z) =

= (212 0¥(r, 2) Iy(r,2) exp [-r? /213,(r,2)], (4

Aq(r,1';2) =
= (2m!/2 63(r,2) Lyi(r, 2) exp [2 /203 (r,2)], (5)
A(2) = 212 L2(2) Li(2) . (6)

With the account of Egs. (3), the equation for
TCF takes the form

%+E6r8r’+3r Oy €(r; 2) —a(r; 2) +
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2
+ TrkTH(r, r; Z)HB(I‘, r;z) =0, )

where r=(r{ +1ry) /2, r =ri—ry. The transverse
differential operator in Eq. (7), as an approximation of
a two-dimensional plane medium, has the form

02 02
oror  oxox'

and, in the case of a three-dimensional axially
symmetric medium takes a more complicated form

0z 02 1 0% 82 5
arar O 3o "7 6¢2 sing o0 or 7 dr
where ¢ is the angle between r and r'. The influence of
random parameters of the medium is defined by the
function H(r, r'; z) = Hg + Hy + Hj,, where

Ag(ry, 0;2) + Ag(ry, 0;2) — 24.(r,1';2)
H(r,1';2) = o ,
(8
Ag(ry,0;2) + Ag(ry, 0;2) + 24,(r,v'; 2)
Ha(r,r’;Z) = 2.’.|.k2 ’
9
Ah(z) _ _
Hy(r,r';2) = Ty [O,8(r,2) - O 8@y, 2) +

+ 4 Oot(ry, 2) + 3 Ogadry, 2)]° O

Ah(z) ,
21 [r

0a(r, 2) ]? (10)

2= 2
05 &(r,2) + A

are responsible for the effect of Q, a and P,
respectively. Relations (8)—(10) hold when the average
density of the radiation flux B(r, 0; z) weakly varies at
a distance of the order of I, 4, Ly and the transverse
length of radiation coherence. The restriction on the
propagation path, which is connected with the
Markovian approximation and takes place in an infinite
randomly inhomogeneous medium,!7 is absent in the
case of a transversally bounded medium.!2 The salient
features of the numerical method for integrating
Eq. (7) have been discussed in Refs. 6 and 18.

Below we suppose that variation of og and Oy is
small at the distances of the same order of magnitude as
the correlation lengths. To perform qualitative analysis

of the effect of fluctuations P, let us represent the
profiles € and @ in the quadratic form, as in Ref. 16:
E=1-0e(1 -r2/a?), O =0g[1 —r2/a?], where a is
the half-width of the active medium, z, is the refraction
length, Ae = (a/z,)? is the step-wise variation of the
regular component of the dielectric constant in the
medium. Beyond the medium (for |[r|>@) €=1anda=0.

Then, taking into account Egs. (8)—(10), we obtain
from Egs. (4)—(6) that
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He(r,v';2) =2 /1 0} I {1

2
o
Hy(r,v';2) :—\/2/11%“

= {1 —exp[-72/(2EZD]}, (12)

—exp [- 72/ Q2)]}, (11)

ALYLE 3

20pr
Hy(r,v';2) = \/— Ez o[

l kaz |:| (13)

Let us write Eq. (7) for an active medium with
the allowance for Egs. (11)—(13):

i 0? B _6 (kalam)2 .
koror %0 23
Lioge , . % ,0
* —\lgwoLllazDQ%“ 2rg
(kalsu)Z I:l_ rl2
— ]+
BER R
I2
0 r %
— ex +
POoasg,

Zg
EB(r r;z)=0,

(kczlom)2

e

DQD DQD

3(ka)2
2212

(14)

where

2e =162/ (alg)? /o7 Igyl";
o = 162/ *(kaly)® /o5 Iyl

are characteristic lengths of spontaneous radiation
scattering at “strong® (more exactly, strong small-scale

Q and 9,

or arbitrary large-scale) fluctuations
respectively (see Refs. 9 and 12). The value

2= 16Q2/m" *az))® /(4L L2)?

has the meaning of the scattering length of

spontaneous radiation on fluctuations P The term of
Eq. (14) with r2 leads to beam narrowing with the

increase in z due to inhomogeneity of the profile @ and
the beam broadening due to influence of P The summand
with irr' leads to reqular radiation refraction on €

profile due to ¥ influence. The last three summands in
Eq. (14) with the corresponding scattering length

define the radiation scattering on the fluctuations Q, &
and I’

The influence of fluctuations  on widely diverged
radiation is significant if z; is of the same order of
magnitude or less than the medium length.9 Figure 1
presents the results of numerical integration of

equation (7) for &= =0 and in the absence of regular
diffraction. The divergence of input partially coherent
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radiation considerably exceeds the characteristic
diffraction and geometric angles A /2a and 2a/z, i.e.,
radiation does not, in fact, differ from spontaneous one,
from the standpoint of influence on the output
radiation parameters. Figure 1 shows the axial
brightness of amplified radiation qo(2) =

= JJ B(r,r'; z) dr dr', normalized by the brightness of

input radiation g, at a homogeneous amplification in
two- and three-dimensional axially symmetric media for

ka=1.500%4, Ae=0, Oa¢=200772 len/a=2 a0z,
klgy=300% and different og. Beyond the active
medium (for |r| > @), we have a = 0, £ = 1.

o qo/qse™?
L ™~ \ D\-D
- O\.
1071k T~
O\ °
+ O
1072
1%
1()‘4 —I 1 1 ! 1
0 0.05 0.1 2/(ka2)
a
 Go/qse*?
109 Os—[f—f—8—8F—a—8—8—=&
?\E\. D\D\D
i \ e \D\D\u
- /o) N
1071 \o '\.
\o \.\
°
2L
10 : \o\ \o
- o)
103 \
3 o\
[ o)
10740k ) ] ! |
0 0.05 0.12/(ka2)

Fig. 1. Plots of axial brightness of radiation go(z) in the two-
dimensional (@) and three-dimensional (b) cases for ka=
=1.500% Ae=0, aa=2002, lgn/a=2 0072, klg =302
and 0g=0 ( ), 2007 (0), 400~ (M), 6 010 (O).

As seen from Fig. 1, the axial brightness grows
exponentially with increase of the medium length in the
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absence of fluctuations Q, i.e., qo(2) = g, exp(0z). The

presence of g preserves exponential growth of axial
brightness for z =z, but the exponent decreases,

namely, go(z) Oexp (0z — 1gz). Thus, the scattering of

amplified spontaneous radiation on the fluctuations gis
similar to linear absorption with the intensity
coefficient 1 which can be effected by the medium

geometry. Therefore, the presence of E lowers the
actual gain coefficient of the medium. Application of the
analytical solution of Eq. (1) (Ref. 9), which was
obtained for an infinite medium, yields different law of
axial brightness variation with the growing length of

the active medium: ¢o(z) Oexp (@2) (zg/2)3n-1/2)

where n is the dimensionality of space (n =2 for a
plane medium, n = 3 for a three-dimensional medium).

Thus, radiation scattering on fluctuations g in a
laterally bounded active medium significantly differs
from scattering in an infinite medium.

Figure 2 plots the value 1.(0¢) determined by the
slope of the linear part of the curves go(z) in Fig. 1 for
two- and three-dimensional media. The view of the
function 1.(0) depends on the parameter dg=
= kalgy/ z¢, i.e., on the ratio between the diffraction
length of a beam having the half-width @ and
correlation radius /g to the characteristic scattering

length. For weak fluctuations E, when d§ <1, we
obtain I = 3d2/z, 0oZ, and 1 does not depend on g
and geometry of the medium. A qualitatively close
result was obtained for the scattering coefficient of a
coherent beam in an infinite randomly inhomogeneous

active medium.!® For strong fluctuations £ when
dg > 1, we have 1g=1/z, for a plane medium, i.e.,
le DoZ”3.

medium, g = 2 /2, i.e., the losses increase twice.

For a three-dimensional axially-symmetric

1.5

1.0

0.5

6 6:(107%)

Fig. 2. Numerical dependences Ig in the two-dimensional (0)

and three-dimensional (x) cases and the values 3d2/zg (++),
1/z¢ (- --), and 2 /z¢ (—) as functions of og.
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Both in the absence of regular diffraction or its
weakness (zg <z,) and strong regular diffraction
(z¢ > z,), scattering of amplified spontaneous radiation
by E deteriorates angular divergence, coherence, and
coherent power of radiation. Coherence grows with the
increasing length of medium and tends to a constant
value depending on the level of regular diffraction.9 14

Under strong defocusing refraction, radiation
scattering by Eis not an analog of linear absorption as
it took place at z¢ < z,. The sharp drop of the degree of
coherence is accompanied by a weak decrease in the
radiation intensity and broadening of the beam.
Fluctuations Q show a hidden, in a certain sense, effect
upon amplified spontaneous radiation at a strong
regular diffraction.10,12,14,20

As seen from Eq. (14), the mechanism of
scattering on fluctuations & is quite similar to the case
of &l But it is worth saying that scattering on Eat the

same scale and depth of fluctuations g and & is much
more significant due to direct effect on the radiation

phase. The part of & can be compared with that of g
only at a sufficiently high value oy Oko.. However,

fluctuations & lead not only to scattering but also to
the inverse effect, namely, to additional amplification
against the background @ because Hy # 0 for r' = 0.
According to Eq. (14), an addition to regular
amplification is  (11/2)"/ %02 lo = 6d2/ zq,
dq = kalyp/zy. The addition significantly changes the

where

effect of radiation scattering on & Indeed, for E=0and
homogeneous @, axial brightness varies as go(z) Oexp[ (0 +
+ Ga’g/za —1)z]. For weak fluctuations Q, when dg <1,
scattering on & leads to additional losses with the
intensity coefficient 1 = 3d2 /z4. In final analysis, total
effect of & leads to an increase of axial brightness of
radiation, and go(z) Oexp [(@ + 3d3/z4)z].

Under strong fluctuations EJ, when d2 =21, we
have 1g=(n — 1) /zq; then qo(z) Oexp [(@ + 6d3/zq —
- (n—1)/zyz]. It follows that the total effect of Q,
like in the above case, leads to an increase in the axial
brightness of amplified spontaneous radiation as dg > 1.
Therefore, in presence of Q and E, the negative effect
on brightness due to radiation scattering on g s

somewhat weaker by the effect of &
As seen from Eq. (14), the relative contribution of

the axial fluctuations P to additional regular refraction
and regular broadening of a beam is defined by the
scale of the value (8m!'/20¢L|(L,/@)? as compared
with unity. This value depends on amplification at the
length Ly and on the ratio L/ a which is small because
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the axial fluctuations are taken to have small transverse
scale. As seen from Egs. (10) and (13), the

contribution of fluctuations F to radiation scattering
takes place only in the presence of regular refraction. It

is similar in its form to that of strong fluctuations g
when the exponents in Eq. (14) can be expanded into a

series. The values Iy, g, Og 2z¢ in the case of g
correspond to the values Ly, Ly, o, =2(L_/2,)?, 2z in

the case of P respectively. However, from the relation
zp/ 2, = (z,/LP!/3a/L)?/3 it follows that radiation

scattering on the fluctuations ¥ (when they are small-
scale) is much less as compared with the regular

refraction on the profile €. Thus, z,>2z and

fluctuations I have a weak effect on the intensity of
output radiation but can significantly affect its
coherence. Using Eq. (12), we obtain that the length of
coherence of output radiation, which grows
exponentially with the increase of z when fluctuations

p are absent, is limited by the value
L.=21/2 L exp[x/3d} - C/2],

for dj, <X/2, where dj, = kaLy/z;; X = In &2,/ z2,);
C is the Euler constant, & is the level of the step-wise
change in the coherence degree by which L. is
determined.

Conclusion

By use of the quasi-optical equation for TCF of
the complex field amplitude, dynamics of spontaneous
radiation with low spatial coherence in a randomly
inhomogeneous laterally bounded extended gain
medium is studied. The model allows for the
diffraction, regular refraction and amplification,
scattering on usual fluctuations of the dielectric
constant and amplification, scattering by random
transversally small-scale axial deviations of an active
medium. The equation has been considered analytically
and solved numerically for two- and three-dimensional
axially-symmetric medium. Criteria of medium optical
parameters’ influence on the amplified spontaneous
radiation are obtained. It is shown that fluctuations of
the gain coefficient yield an additional contribution to
regular amplification of radiation, which dominates
over radiation scattering on the fluctuations. This
means that fluctuations of the gain coefficient decrease
the losses due to radiation scattering on the
fluctuations of the dielectric constant. Axial
fluctuations of an active medium in the presence of
regular refraction lead to radiation scattering.
However, the influence of axial fluctuations on the
radiation intensity is weak if they are small-scale and
amplification at their longitudinal correlation length is
small. At the same time, axial fluctuations can have an
effect on the coherence length; namely, they restrict its
growth with the increase of the medium’s length.
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