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We have developed a new approach to data processing for a space-based information and 
measuring system observing the Earth’s surface and locating sources of pulsed optical radiation on the 
Earth. In this approach, the direct (non-iteration) algorithm for calculating the initial estimate of the 
source’s coordinates is connected with the procedure of updating the estimate by the method of Bayes 
recursion. The direct method for the initial estimate of the coordinates excludes the problem of possible 
divergence of calculated results. Application of Bayes recursion enables one to obtain final high accurate 
estimates and simplifies methodological analysis of measurements by constructing the covariation matrix 
of estimation errors (uncertainties) together with estimation of the coordinates. 

 

1. In modern optics, together with other important 
applied problems, there is a problem of studying the 
Earth and its ambient atmosphere from the space in the 
optical range of the radiation spectrum. To carry out 
such investigations, one applies systems of global 
observations. The systems include groups of satellites 
with devices intended for sensing the Earth’s surface 
and a ramified network of ground-based and airborne 
information tools.1 This is a very complicated and 
expensive equipment on the basis of which space-borne 
information and measuring systems (SB IMS) are being 
developed. The SB IMS development and application in 
research purposes for solving concrete problems pay for 
themselves in the cases when one can guarantee the 
reliability of the results obtained. The latter, finally, is 
determined by the accuracy and reliability of 
measurements on sensing the Earth from space. Here we 
deal with indirect measurements whose error in some 
cases is determined rather by the method and 
algorithms of data processing than by the performance 
characteristics of the system’s equipment. 

In this paper, we consider a particular but 
practically important problem of data processing in 
localizing a ground-based (or near-ground-based) source 
of pulsed optical radiation with a space-based 
information and measuring system. There exist several 
approaches to solving this problem which yield 
satisfactory results (see, for instance, Ref. 2 and its 
bibliography), but the demand of further increase of 
the accuracy and reliability of algorithms and their 
metrological support is still urgent. 

We propose a new scheme for processing data of 
remote sensing to localize sources of optical radiation 
with a space-based information and measuring system. 
The scheme has some advantages as compared with 
other approaches. Its salient feature is combination of 
the Kalman filter3 in the variant corresponding to the 
static problem of recursion Bayesian estimation with 
the algorithm of source coordinates’ estimation by the 

direct (non-iterative) method of intersecting spherical 
surfaces (MISS).4 Direct methods are reliable, efficient 
in calculation, and yield results sufficiently close to the 
œtrue values,B i.e., to the linear estimates of the 
source’s coordinates, that are the best regarding the 
criterion of minimum variance. The Kalman filter opens 
the possibility for further refinement of the results 
obtained by MISS in the process of acquiring new data 
about the object from different space-borne 
instruments. Simultaneously, the error covariation 
matrix (according to ISO terminology, œuncertaintyB5 
of estimation) is being calculated and renewed. The 
covariation matrix describes the accuracy characteristics 
of the method and allows one to form an opinion about 
its competitive abilities and expedience of application 
in one or another applied task. The matrix is necessary 
in certification of the method, models, and algorithms 
of data processing. The problem of developing and 
certifying the methods, models, and algorithms is 
central both in remote sensing and in the SB IMS 
metrology.6 

2. The variant of Kalman’s filter that is used in 
the proposed scheme of data processing is in fact a 
Bayesian procedure of random values estimation. The 
Bayesian approach to statistical estimation of the 
probability distribution is, as it is well known, 
œpolytheistic.B It includes both subjective (the choice 
of the initial distribution) and objective (further 
refinement of the chosen distribution on the basis of 
new data obtained from an experiment) factors. In this 
approach, the word œBayesianB means the fact that the 
a priori data are refined by the formula of recursion 
which formally looks like the Bayesian theorem from 
elementary probability theory.7 Let u be the vector of 
parameters that are to be estimated in the given 
problem, v1, v2, … be the results of measurements 
whose probability distribution depends on u. By !(u) 
we denote the a priory probability of the vector of 
parameters u (the parameters are considered as random 
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values) and let p(X|v1, … , vm$1) be the a posteriori 
probability corresponding to the measurement results 
v1, … , vm. Then the recursion formula 

 p(X|v1, … , vm) ≈ p(X|v1, … , vm$1)�(vm|X), 

 m = 2, 3, … , n (1) 

is valid with the initial condition 

 p(X|v1) = p(X)�(v1|X). 

Here �(vi|X) = p(vi|X)/p(vi) is the likelihood function 

u for a given vi (i = 1, …, m), i.e., conditional 
probability that the experiment yields the value vi. The 
values u for which the likelihood function reaches its 
maximum are likely. These are the values that are 
chosen as estimates of the true values of u parameters. 

The Kalman filter differs from the classical 
Bayesian procedure in the following: instead of the 
recursion refinement of the probability distributions, it 
solves a more œmundaneB problem of recursion estimation 
of values taken by the random vector u for these 
probability distributions, without explicit reference to the 
distributions. The key point is the fact that the 

components of the vector u and its estimate X̂ lie in the 
probability space of random values with the finite second 
moment, i.e., in the probability space L2(Ω, μ) (Ω is the 
space of elementary events ω; μ is its probability 
measure). But this is a Hilbert space, and one can apply 
the projection theorem, i.e., estimation genesis by the 
criterion of minimum variance.8,9 According to this 

theorem, in any closed subspace M of the space L2
n(Ω, μ), 

there exists a unique vector X̂ such that 

 ||X $ X̂|| ≤ ||X $ M|| for all M ∈ M. 

This vector is a projection of X onto M, (X $ X̂) ⊥ M. In 

our consideration, M is the subspace of data, X̂ is the 
optimum estimate or, more exactly, estimator of X 
based on the measurement data V(ω). As follows from 

the projection theorem, the estimator X̂ exists and is 
determined uniquely by the relation 

 X̂ = g 
°

 V ≡ g(V(ω)) and ||X $ X̂|| ≤ || h 
°

 V $ X||, (2) 

where g is the estimating function and h is an arbitrary 
Baire (Borel-measurable) function, both defined on Ω. 
The real output of the estimation tool is the estimating 
function g and covariation matrix of the estimation 
errors 

 P Δ= E[(X $ X̂) (X $ X̂)T]. (3) 

Here e  is the mathematical expectation operator and Š 
is the matrix transposition sign (in this case, this is a 
column matrix); Δ is the composition sign. 

3. The estimation procedure under consideration is 
based on the following theorem (it is called the Bayes 
renewal theorem).9 Let there be an estimator for 

minimum variance X̂1 of a vector X by a vector V1 and 
the covariation matrix P1 corresponding to it. Further, 
let a new information V2 about the vector X be 
obtained by linear measurement against the background 
of an additive noise W: V2 = HX + W. The noise has 
no internal structure, i.e., its bias equals zero and it 
correlates neither with the measured value X, nor with 
any past information about it: 

 E[W] = 0, E[XWT] = 0, E[V1W
T] = 0. 

Then the new estimator of the minimum variance of the 
vector X based on the data vector V = [V1

Š
 

¦
 V2

Š]T  is 
uniquely defined by the relation 

 X̂2 = X̂1 + P1H
T(HP1H

T + Σ)+(V2 $ HX̂1), (4) 

and the covariation matrix P2 by the relation 

 P2 = P1 $ P1H
T(HP1H

T + Σ)+ HP1. (5) 

Here Σ = E[WWT], and (+) is the pseudo-inverse 
operator; it is defined for a non-degenerate matrix A by 
the relation10 A+ = (ATA)$1AT. It is not required to 

know the vector V1 in calculating of the estimate X̂2 by 
the vector V2. 

If all the matrices P1, P2, Σ, and HP1HT+Σ are 
regular, the equations (4) and (5) are simplified. In 
this case, using the lemma of matrix inversion9,11 

 (A11 $ A12 A22
$1 A21)$1 = 

 = A11
$1 + A11

$1A12(A22 $ A21A11
$1A12)$1A21A11

$1 

and the well known rule (AB)$1 = B$1A$1, one can 
transform Eqs. (4) and (5) to 

 P2 = [P1
$1 + HT Σ$1H]$1; 

 X̂2 = P2H
T Σ$1 V2 + P2P1

$1 X̂1 . (6) 

The presented theorem implicitly describes the scheme 

of recursion estimation. If X̂1 and P1 are known and, in 
addition, information V2 is obtained, one can calculate 

X̂2 and P2. Then, if V3 is obtained, one can calculate X̂

2 and P3, and so on. Here, capital letters denote 
matrices and random vectors. Concrete realizations of 
random vectors are denoted by lower case letters x, v, 

etc. In practice, one calculates not the vector X̂ but one 
of its realizations x̂ (estimation) defined through the 
realization v = [v1 … vm]T of the vector V by use of 
the estimating function g: 

 x̂ = g(v1 … vm). 

Estimation is performed by the same equations (3)$(5) 
but X and V are substituted for by x and v. 

The fact that the covariation matrix P2 can be 
determined before obtaining the data v2 and calculation 
x2 seems to be curious. This can be explained by the 

fact that P2 is not a characteristic of the estimate x̂2 
but a characteristic of the estimation process. This is an 
element of the algorithm’s certification. 



1100   Atmos. Oceanic Opt.  /December  1999/  Vol. 12,  No. 12 A.V. Fabrikov 
 

 

The incoming information can be of different types 

and characterized by different matrices Hi. Matrices Σ 

also can be different. Generalizing the equations of 
the recursion estimation with the allowance for this 
fact, let us write them in the form 

 x̂i = x̂i$1 + Pi$1H i
T(HiPi$1H i

T + Σi) 

+
 (vi $ HiX̂i$1), 

 i = 2, ... , m; (7) 

 Pi = Pi$1 $ Pi$1H i
T(HiPi$1H i

T + Σi) 

+ HiPi$1, 

 i = 2, … , m. (8) 

The problem is formulated here as applied to the static 
problem of the recursion estimation: data of different 
measurements Vi are used to improve estimates of the 
same vector X which does not depend on time. In our 
consideration, this corresponds to the case of a 
stationary source. The situation with a moving source 
allows a similar consideration but the equations (7), 
(8) must be changed for more general equations of 
dynamic Kalman filtering. 

4. Now let us turn directly to the process of 
localization of a source with an information and 
measuring space-based system and apply the above-
mentioned formalism of data processing. In source 
localization, we use pairwise differences of time 
moments ti of a signal’s arrival at different space 
platforms (SP) included into the SB IMS: 

 dik = c(ti $ tj), i, j = 1, … , N, (9) 

where “ is the speed of light in free space. Non-
iteration (direct) methods for estimation of the 
source’s coordinates x = [x y z]Š by these data are 
reduced to œsolvingB the system of equations which is 
inconsistent in the general case. Below, it is 
represented in a matrix form: 

 Ax ≈ Rd $ Δ . (10) 

Here ` is the system matrix consisting of the 
coordinates xi, yi, zi, of the SP detecting a signal; Δ 
and d are data vectors; R is the distance from the 
source to one of the SPs chosen as a reference point. 
Let it be the 1st SP. Then, in the geocentric coordinate 
system, for a round SP orbit of constant radius 
Ri = const, we have 

 A = 

⎣
⎢
⎡

⎦
⎥
⎤

x2 $ x1 y2 $ y1 z2 $ z1

x3 $ x1 y3 $ y1 z3 $ z1

... ... ...

xN $ x1 yN $ y1 zN $ z1

 , 

 d = 

⎣
⎢
⎡

⎦
⎥
⎤

d1

d2

...

dN$1

 , Δ = 

⎣
⎢
⎡

⎦
⎥
⎤

Δ1

Δ2

...

ΔN$1

 , 

 

where di ≡ di+1 and Δi = di
2/2. Sometimes it is 

convenient to perform calculations in a coordinate 
system connected with the reference satellite. The new 
system is obtained by a translation of the initial one 
when the origin is superposed with the reference SP. 
Here 

 A:= 

⎣
⎢
⎡

⎦
⎥
⎤

x2 y2 z2

x3 y3 z3

... ... ...

xN yN zN

 ;   Δi:= 
1
2 [Ri+1

2  $ (di)2] . 

The sign of the approximate equality stands in Eq. (10) 
because its right-hand part contains a noise. 

The estimate of the vector of the source’s 
coordinates x = [x y z]T can be obtained from these 
equations for N ≥ 4. Calculating initial estimates x̂1 
and P1, let us restrict ourselves to the minimum 
number N = 4. If R is known, the solution of 
equation (10) in this case takes the form 

 x ≈ A$1(Δ $ Rd). (11) 

But we do not know R. However, taking into account 
that the equality xŠx ≈ R2 is valid in the coordinate 
system connected with the reference SP, we deduce a 
quadratic equation in R from Eq. (11). Its solution is 

 R̂ = ($ b/a) ± (b/a)2 + (c/a) . (12) 

Here 

 a = 1 $ dT(AAT)$1 d;   b = dT(AAT)$1Δ; 

 c = ΔT(AAT)$1Δ . 

Only one of these two solutions is physically permeable 
(R > 0), namely, the solution with the (+) sign before 
the square root. Substituting Eq. (12) into Eq. (11) 
and returning to the initial geocentric system of 
coordinates (x:= x + x1), we obtain the initial estimate 

 x̂1 = A$1 (Δ $ R̂d)  (13) 

for the following improvement by use of the Bayesian 
procedure. 

The covariation matrix P ≡ cov{x∼} of errors of x 
estimation by the presented algorithm was defined in 
Ref. 2. For the case when the errors in determining 
different dij do not correlate and are characterized by 
the same variance σ2, the approximate expression for  
the matrix has the form 

 P1 = σ2 R1
2 (ATA)$1,   R1

2 = x̂1
T x̂1.  (14) 

It is the expression that we take as the initial 
covariation matrix. 

5. Let us illustrate our approach to data 
processing in estimating coordinates of a light source by 
the example of the model experiment described in 
Ref. 12.  
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Table 1. Geocentric coordinates (xi, yi, zi) of SP detecting a signal, distances of SP from the source (ri), differences of the 
distances between the source and different SP pairs (di), and errors of their determination εi 

 

i xi, m yi, m zi, m ri, m di, m εi, m 

1 8420304 9408516 22121259 19173926  32 

2 18764166 7611333 15451391 19641065  281 

3 22434093 332881 12057050 20804192  277 

4 8823081 $7520353 22679712 20872552  $140 

5 $10525984 12972770 19227134 22156824 ∗ $250 

6 17713457 18284404 $828144 22665355  $150 

7 $12949786 8880350 20055279 22685992  $192 

8 $8746072 $10085138 21692580 23636650  142 

9 $9567691 22643850 6669867 23936548  $23 
 

10 

11 

12 

∗ 
di = ri + 1 $ r1 + εi, i = 1, … , 6, 
di = ri $ r2 + εi, i = 7, … , 9, 
di = ri $ 6 + r2 $ εi, i = 10, ... , 12 

 $354 

9 

$200 

 
The signal from a source is detected with nine SPs 

(N = 9) whose coordinates in the geocentric coordinate 
system at the moment of signal detecting are presented 
in Table 1. The same table presents differences of the 
distances between the source and different pairs of SPs 
dij which are used in the calculations 
(i = 2, … , N, j = 1 or 2 depending on the choice of 
the reference SP) and errors of their determination εi. 
The source’s coordinates are x = 2879593 m, 
y = 2249784 m, z = 5218818 m. The errors are 
considered to be random values. The presented εi are 
samples from a (discrete) random Gaussian process with 
zero mean value and the variance σ2 = 210 m generated 
by a computer (in the MathCAD PLUS 7.0 PRO 
program pnorm(m, μ, σ)). 

The initial estimate of the source was performed 
by the direct method using Eqs. (12)$(14) with the 
values 

 A = H1 := 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ x2 $ x1 y2 $ y1 z2 $ z1

 x3 $ x1 y3 $ y1 z3 $ z1

 x4 $ x1 y4 $ y1 z4 $ z1

 ; 

 d = d1 := 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ d1

 d2

 d3

 , Λ = Λ1 := 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ Λ1

 Λ2

 Λ3

 . 

Let us present the obtained results which give an 
insight about the accuracy characteristics of the direct 
method initializing the Bayesian recursion process: 

 x̂1 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ 2880910

 2250222

 5220836

 ; 

 P1 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤13323448 759467 18646607

759467 95278 1029493

18646607 1029493 26228992

 . 

Further improvement of the initial estimates 
obtained by the direct method was performed by the 
Bayes formula (6) in two steps. At the first 
improvement step, we used the values 

 H2 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤x5 $ x1 y5 $ y1 z5 $ z1

x6 $ x1 y6 $ y1 z6 $ z1

x7 $ x1 y7 $ y1 z7 $ z1

 ; 

d2 = [d4 d5 d6]T, Λ2 = [Λ4 Λ5 Λ6]T; 

at the second step 

H3 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤x7 $ x2 y7 $ y2 z7 $ z2

x8 $ x2 y8 $ y2 z8 $ z2

x9 $ x2 y9 $ y2 z9 $ z2

 ; 

d3 = [d7 d8 d9]T, Λ3 = [Λ7 Λ8 Λ9]T; 

at the third step 

H4 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤x4 $ x2 y4 $ y2 z4 $ z2

x5 $ x2 y5 $ y2 z5 $ z2

x6 $ x2 y6 $ y2 z6 $ z2

 ; 

d4 = [d4 d5 d6]T, Λ2 = [Λ4 Λ5 Λ6]T. 

The values R̂ := R2 and R̂ := R3 at each step were 
taken first from the preceding calculation cycle and 
then re-calculated (in the satellite framework) by the 
formulas 

 R2 := x̂2
T x̂2   and   R3 := x̂3

T x̂3 . 

Here, as one should expect, the values appeared to be 
close to r1 and r2 (m): 

 R2 = 19173919 ≈ r1 and R3 = 19641098 ≈ r2. 

The final result of calculations is represented in 
the form 

 x̂4 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ 2879531

 2249922

 5218796

 ;   P4 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ 4972 2429 3487

 2429 18725 10640

 3487 10640 25206

 . 

The estimation values x̂, ŷ, ẑ, r̂1(= R2), r̂2(= R3) after 
two improvement cycles by the Bayesian procedure 
differ from the true values (given in the formulation of 
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the model problem) x, y, z, r1 = x1
2 + y1

2 + z1
2, 

r2 = x2
2 + y2

2 + z2
2 by not very large values δx = $ 62, 

δy = 137, δz = $ 23, δr1 = $ 7, δr2 = 33 m. In percent, 
the values are very small, e.g., δx/x ≈ 6 ⋅ 10$6 %, but 
localization problems, as a rule, need just absolute, not 
relative values. 

The diagonal elements of the covariation matrix P 
yield estimation variances (δx)2, (δy)2, (δz)2 for 
conditions of the given experiment. In accordance with 
the results obtained for P4, we have 

 σx = 71,   σy = 139,   σz = 159 m. 

These are estimation characteristics. They 
certificate the estimation method, and not an individual 
estimate obtained by this method. The values | σx |, 
| σy |, | σz | not obligatorily coincide with σx, σy, σz but 
must not differ from them too much. 

6. The paper presents a new approach to 
processing of data of a space-based information and 
measuring system for localization of ground-based 
optical radiation sources from the space. It has some 
advantages as compared with other known approaches. 
The first advantage is in the absence of the problem on 
calculation results’ convergence. This is guaranteed by 
application of a direct (non-iteration) method for the 
initial estimation of a source’s coordinates in 
initialization of the further process of the results’ 
refinement. The second advantage is in high accuracy of 
the final results on estimating source coordinates what 
is caused by execution of several cycles of Bayesian 
recursion. For a typical situation considered in the 
paper (detection of a signal from an optical pulsed 
radiation source by nine SPs at round orbits of 
26000 km radius), the method is characterized by the 
following standard deviations of coordinates’ estimate: 
σx = 71, σy = 139, σz = 159 m. The third advantage is 
in the fact that one can simultaneously calculate the 
estimate for a source’s coordinates and the covariation 
 

matrix of uncertainties in estimating x, y, and z., i.e., 
metrological characteristics of the method for a given 
configuration of the source and œconstellationB of SPs 
detecting the signal.  

The considered method of data processing for 
remote sensing of the Earth’s surface in localization of 
optical radiation sources with a space-based information 
and measuring system requires a larger body of 
calculations as compared with the direct method for 
estimating source’s coordinates described in Ref. 2. 
However, it is not only more accurate and reliable but, 
at the same time, more convenient for a metrologically 
proved estimates of the results obtained. In particular, 
it can be applied to metrological investigations and 
periodic tests of other methods, more rapid but less 
accurate. 
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