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The method is synthesized for active image restoration under conditions of amplitude-phase 
distortions in the spatial spectrum of a signal. The methods allow for spatiotemporal modulation of the 
signal due to target rotation and use no reference source in the target image plane. The proposed solution 
is also suitable for achieving super-resolution over the angular coordinate, including the case of 
constructing a 3D image. 

 

The method of active restoration of target images 
which assumes compensation for multiplicative 
distortions in the spatial spectrum of a signal has been 
considered in Refs. 1$4. Such distortions can be caused 
by both imperfections of elements of the antenna$
feeder circuit and turbulence of the medium the signal 
propagates through. 

In this paper this method is further developed. Its 
new modification takes into account a complex nature 
of the target motion. 

Actually, any movement of a target can be 
presented as a set of tangential, radial, and rotational 
movements. In this case it appears that the rotational 
movement œitselfB provides the basis for active 
restoration. 

The target image E
⋅
(r) is, as earlier, considered as 

the vertical complex spatiotemporal distribution of a 
signal in the image plane of the target upon its 
exposure to a plane wave oriented along the sight line. 
Such an approach is convenient, since it allows us to 
ignore the volume character of a target. Thus, keeping 
in mind that the information on the radial structure is 
in the argument of the complex function E

⋅
(r), we can 

reduce the problem to the Kirchhoff integral over the 
surface located in the image plane of the target. 

For convenience, we use the Fraunhofer 
approximation, implying that with the corresponding 
substitutions we can use the Fresnel approximation. 

So, let the target turn by a small angle Δθ with 
respect to the normal to the sight line within a short 
time interval Δt, not exceeding the time of the signal 
coherence. Then, as in Refs. 1$3, r is the vector in the 
image plane of the target, ρ is the vector in the 
aperture plane. Let also 

 φ t(r) = E
⋅
(r) .  (1) 

At rotation by the angle Δθ, the phase at every point r 
changes according to the equation of a straight line 

 Δφ t(r) ≡ 2k tan (Δθ) r,  (2) 

where for simplicity (but without loss of generality) it 
is assumed that the center of rotation lies on the sight 

line; k = 2π/λ is the wave number; λ is the 
wavelength. 

Then at the time Δt the signal 

 E
⋅

(r, Δt) = E(r) exp{ j[φ�t(r) + Δφ�t(r)]} = 

 = E(r) exp{ j[φ�t(r) + 2k tan (Δθ) r]}   (3) 

is formed in the image plane of the target. At small Δ�θ 
and Δt, Eq. (3) can be written as 

 E
⋅

(r, Δt) = E(r) exp{ j[φ t(r) + 2k Δθ r]} .  (3′) 

Taking into account that 

 Δθ = ωrot Δt ,  (4) 

where ωrot is the speed of target rotation, we obtain 
from Eq. (3′) that 

 E
⋅

(r, Δt) = E(r) exp{ j[φ t(r) + 2k ωrot Δt r]} .  (5) 

In the Fraunhofer approximation, omitting the factors 
which are inessential for further consideration, we 
obtain the following amplitude$phase distribution in 
the plane of the receiving aperture at the time t: 

 ε⋅(ρ, t) = 

= exp[jϕa(ρ)] A(ρ)⌡⌠ dr exp($ j2πrρ/λR) E
⋅

(r, t) ,  (6) 

or, taking into account the definition of the spatial 
distribution of the valid signal 

 ε⋅ = ⌡⌠ dr exp($ j2πrρ/λR) E
⋅

(r),  (7) 

we have 

 ε⋅(ρ, t) = A(ρ) exp[jϕa(ρ)] ε⋅(ρ) .  (6′) 

Hereinafter A(ρ) denotes amplitude distortions and 
ϕa(ρ) the multiplicative phase distortions, which are 
constant during the time of consideration. 

Then at the time (t + Δt) we have in the plane of 
the receiving aperture  
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 ε⋅(ρ, t + Δt) = A(ρ) exp [jϕa(ρ)] × 

 × ⌡⌠
 
 dr exp ($ j2πrρ/λR) E

⋅
(r, t + Δt) = 

= A(ρ) exp [jϕa(ρ)]⌡⌠
 
 dr exp ($ j2πrρ/λR) E(r) × 

 × exp { j[φt(r) + 2k ωrot Δt r]} , 

and, taking into account Eq. (1) and the shift theorem, 

 ε⋅(ρ, t + Δt) = A(ρ) exp [jϕa(ρ)] × 

 × ⌡⌠
 
 dr exp [$ j2πrρ/(λR) (ρ $ 2R ωrot Δt)] E

⋅
(r) = 

 = A(ρ) exp [jϕa(ρ)] ε⋅(ρ $ 2R ωrot Δt) .  (8) 

Introducing the designations 

 ϕ(ρ) = arg ε⋅(ρ)  (9) 

and 

 ψ(ρ, t) = arg ε⋅(ρ, t) ,  (10) 

from Eqs. (6′) and (8) we derive the following two sets 
of equations for the phase and amplitude: 

 
⎩
⎨
⎧ψ(ρ, t) = ϕa(ρ) + ϕ(ρ),

ψ(ρ, t + Δt) = ϕa(ρ) + ϕ(ρ $ 2R ωrot Δt),
  (11)  

 
⎩
⎨
⎧ε(ρ, t) = A(ρ) ε(ρ) ,

ε(ρ, t + Δt) = A(ρ) ε(ρ $ 2R ωrot Δt) ,
  (12)  

where ε is the absolute value of ε⋅. 

Let us first solve Eq. (11) for ϕ(ρ). Upon 
subtraction of the first equation of the set (11) from 
the second one, we have 

ψ(ρ, t + Δt) $ ψ(ρ, t) = ϕ(ρ $ 2R ωrot Δt) $ ϕ(ρ) . (13) 

Having divided both sides of Eq. (13) by Δt, we 
obtain 

ψ(ρ, t + Δt) $ ψ(ρ, t)

Δt
 = 

ϕ(ρ $ 2R ωrot Δt) $ ϕ(ρ)

Δt
 .  (14) 

Let us designate 

 Δρ = $ 2R ωrot Δt .  (15) 

With regard to this designation, Eq. (14) takes the 
form 

 $ 
ψ(ρ, t + Δt) $ ψ(ρ, t)

Δt
 = 

 = $ 2R ωrot 
ϕ(ρ $ 2R ωrot Δt) $ ϕ(ρ)

Δρ  .  (16) 

We can see that as Δt tends to zero, Δρ also tends to 
zero according to Eq. (15). Thus, from Eq. (16) we 
derive 

 lim
Δt → 0

 
ψ(ρ, t + Δt) $ ψ(ρ, t)

Δt
 = 

 = $ 2R ωrot lim
Δt → 0

 
ϕ(ρ + Δρ) $ ϕ(ρ)

Δρ  .  (17) 

As a result, taking into account the definition of a 
derivative, we have 

 
äψ(ρ, t)

ät
 = $ 2R ωrot 

äϕ(ρ) 
äρ  .  (18) 

Upon integration of Eq. (18), we find 

 ϕ(ρ) = 
$ 1

2R ωrot

 ⌡⌠
 
 dρ 

äψ(ρ, t)

ät
 .  (19) 

Equations (18) and (19) give the sought solution 
for the phase of the spatial spectrum of signals, which 
is free from multiplicative phase distortions ϕa(ρ). 

The set of equations (12) in its turn can be solved 
for the absolute value of the spatial spectrum of the 
valid signal ε(ρ). Toward this end, it is first convenient  
to take  the logarithm of the equations: 

⎩
⎨
⎧ln ε(ρ, t) = ln A(ρ) + ln ε(ρ) ,

ln ε(ρ, t + Δt) = ln A(ρ) + ln ε(ρ $ 2R ωrot Δt) .
 (20) 

Subtracting again the first equation of the set (20) 
from the second one, we find 

 ln ε(ρ, t + Δt) $ ln ε(ρ, t) = 

 = ln ε(ρ $ 2R ωrot Δt) $ ln ε(ρ) .  (21) 

Repeating the transformations analogous to Eqs. (14)$
(17), we obtain from Eq. (20) that 

 
ä ln ε(ρ, t)

ät
 = $ 2R ωrot 

ä ln ε(ρ)

äρ  ,  (22) 

wherefrom 

 ln ε(ρ) =  
$ 1

2R ωrot

 ⌡⌠
 
 dρ 

ä ln ε(ρ, t)

ät
  (23) 

or, finally, 

 ε(ρ) = exp 
⎣
⎢
⎡

⎦
⎥
⎤$ 1

2R ωrot

 ⌡⌠
 
 dρ 

ä ln ε(ρ, t)

ät
 .  (24) 

Equations (22)$(24) give the sought solution for 
the absolute value of the spatial spectrum of signals, 
which is free from multiplicative amplitude 
distortions A(ρ). 
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Thus, we have the absolute value [Eq. (24)] and 
phase [Eq. (18)] of the spatial spectrum of the signal 
(actually, the amplitude$phase distribution of the field 
at the antenna aperture), which are free from 
multiplicative distortions. So, then we can calculate 
(estimate) the image to be restored E

⋅
(r) itself. To do 

this, we should invert, with the corresponding 
substitutions, the integral transformation of the 
form (7). This transformation, expressing the 
Fraunhofer diffraction, is the spatial Fourier transform 
accurate to the scale factors. 

As to the practical implementation of the proposed 
method, it is clear that time separation of the signal 
can be obtained by introducing delay lines, and 
operations of integration and differentiation can be 
replaced by summation and subtraction, respectively. 

The proposed solution can also apply to the 
problems of 3D vision, similar to that considered in 
Ref. 5, where the high resolution over the angular 
coordinate is achieved by inverse synthesis of the 
aperture, and high resolution over the range is achieved 
by using complex signals, the product of whose spectral 
widths by the duration exceeds unity. Let us only note 
that in contrast to Ref. 5, the high resolution over the 

range here is by no means a guarantee of high resolution 
over the angular coordinate; the latter is achieved 
without invoking the concept of a point-like reference 
source. 

So, in this paper the method for active image 
restoration under conditions of amplitude$phase 
distortions in the spatial spectrum of signals is 
synthesized. This method takes into account the 
spatiotemporal modulation of the signal due to target 
rotation and does not use a reference source in the 
target image plane. 
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