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The nonlinear wave equation derived by the method of path integrals is applied to describe 
scattering of laser radiation. The equations for the field strength at Raman frequencies are obtained in 
the dipole approximation. 
 

Correct description of laser radiation scattering by 
different media is one of the key problems in optics since 

the advent of lasers and formation of nonlinear optics as 
an independent research area in physics. A wide variety of 
different factors and physical phenomena that should be 

taken into account simultaneously when solving the 

problem makes it very intricate to analyze and solve. 
Therefore, in spite of a great bulk of experimental data, no 
unified theory has been proposed that is capable of giving 
comprehensive  answers to all questions. 

In this paper we develop an approach allowing one 
to consider all problems associated with the radiation 
scattering from a unified point of view. The approach 
enables one to  avoid unnecessary complication of the 
problem and to obtain results that agree well with the 
observed experimental data. The proposed method is 
applied to the study of the influence of sonic and low-
frequency electromagnetic waves propagating through a 
substance on the spectral composition of scattered laser 
radiation. Such a model is chosen because collective 
phenomena in media can play a significant part in the 
mechanism of Raman scattering and stimulated Raman 
scattering, as well as in dynamics of transition from one 
type of scattering to another. 

Actually, the methods for solution of this problem 
are based on two approaches: (1) quantum equations 
describing the response of a medium to the external 
electromagnetic field can be derived from the 
Liouville#von Neumann equation1,2 or (2) quantum 
equation can be obtained from phenomenological usage 
of the main properties of a thermostat (in particular, 
assumption of the Markovian properties of the processes 
occurring). The former approach fits neatly into the 
classic schemes of quantum mechanics thus being 
attractive for the rigorous and logically sequential 
actions resulting in solution of the problem. However, 
this method can give mathematically correct and useful 
results only in limiting cases and, as a rule, under some 
additional assumptions.  

This work is based on the latter approach. The 
method of path integrals3 allows one to take into 
account the influence of surroundings on the behavior 
of a selected molecule already at the stage of 
constructing the wave equation. Assuming the processes 

occurring in the medium to be Markovian (what is 
rather an evident physical assumption) and introducing 
the additional weighting function discriminating 
trajectories by their probabilities, we can derive4 the 
wave equation, that includes the velocity of the system 
motion in a thermostat as one of the parameters, in the 
following form: 
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where α and χ are the parameters of the thermostat. 
The joint effect of vibrations of atoms and of the 

external field leads to appearance of dipole moments in 
atoms (due to the interaction with the inner electrons). 
The dipole moments oscillate at the frequencies of the 
external field, frequencies of the atomic oscillations, 
and their combinations. 

The vibrations of atoms near the ground state can 
be considered harmonic to a good approximation. 
Consequently, in Eq. (1) we can introduce 

 V = V0 cos(ωt + f), (2) 

where ω is the frequency of atomic vibrations. Strictly 
speaking, we should take into account vibrations at 
multiple frequencies too, but such a substitution only 
complicates the mathematics not changing the task 
qualitatively. The value of V0 can be estimated starting 
from the virial theorem 

 V0 = 2�ω/M (3) 

or from the theorem on energy distribution over the 
degrees of freedom 

 V0 = 3kT/M. (4) 

The estimates obtained agree by the order of 
magnitude. 

Let us introduce two assumptions more, that in our 
opinion are physically well justified: (1) molecules have 
no constant dipole moment and (2) the external field 
induces the dipole moment in one of atoms, which has 
the natural frequency close to that of the external field. 
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Let us substitute 
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into the Eq. (1) that involves the velocity in the form 
(2). 

For the new wave function ψ1(r, t), the nonlinear 
equation 
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is valid, where E is the strength of the external light 
field; d is the dipole moment. Since quantum states split 
due to interaction with the thermostat, the equation for 
the wave function keeping its normalization in time has 
the form 

 ψ = ψ/ <ψ⎟ ψ> . (7) 

Hereinafter the subscript of the wave function is 
omitted for brevity. 

Equation (6) can be solved by the method of 
successive approximations. For further simplification let 
us assume the external field to be a monochromatic 
wave with the frequency ω0 close to the frequency ω21 
of the transition from the first level to the second. This 
choice allows us  to restrict ourselves to the two-level 
approximation. Besides, we believe that the frequency 
detuning ε = ω0 $ ω21 far exceeds the width of the 
spectral line and the matrix elements of the quadrupole 
moment are nonzero. 

The external field can be presented in the form 

 E(r, t) = E0 cos(ωt $ kr) + δE(r, t), (8) 

where k0 is the wave vector of the incident wave; δE is 
the strength of the electric field generated by the system 
which is related to the polarization of the unit volume 
in the dipole approximation by the well known relation 

 δE(r, t) = ⌡⌠
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The solution of Eq. (6) for the polarization vector 
splits into three terms.5,6 First two terms are 
responsible for radiation at the frequency of the 
external field and at the frequency of natural 
oscillations, respectively. The last term is of greatest 
interest; it is responsible for radiation at Raman 
frequencies. In the case of correlation between 
vibrations of atoms in the medium, this term can be 
presented, accurate to a constant, as 

 P = C cos(ω1t $ k1r), (10) 

where ω1 = ω0 ± 2ω; k1 = k0 ± 2k. The "+" sign 
corresponds to the anti-Stokes component, while the "$" 
sign corresponds to the Stokes component; ω0 is the 

frequency of the external field; ω is the frequency of 
vibration of atoms in the medium; k is the wave vector of 
the wave that induces synchronization, which in the 

general case can be induced by light and sound waves 
propagating through the medium. Correspondingly, the 

following equation 

 k = ks + kl, (11) 

is valid in the general case for the wave vector. In 
Eq. (11) kl is the wave vector of the synchronizing light 
wave; ks is the wave vector of the synchronizing sound 
wave. 

The next our assumption simplifies the mathematics, 
while not decreasing the usefulness of the results to be 
obtained. The external field is considered propagating 
along the Z axis. Assume that the distance to the 

observation point is far longer than the system dimensions 
[this assumption allows us to ignore amplitude 
attenuation with distance and consider r to be constant in 
integrating in Eq. (9)]. The system is chosen to be a 
parallelepiped with the coordinates $l, +l along the Z 
axis and $b, +b along the X and Y axes. To bring 
theory in correspondence with the experiment, we 
assume l >> b. 

In integration we take into account the lags due to 
the finite speed of electromagnetic wave propagation and 
symmetry of the integration limits. Thus, for the 
strength of the field at Raman frequencies we have δE 
accurate to a constant and a time-dependent factor: 
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where 
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cosα, cosβ, and cos γ are the direction cosines of the point 
at which the field is to be determined; cosα1, cosβ1, and 
cos γ1 are the direction cosines of the vector k. 

One can see from Eqs. (12) and (13) that the field 
emitted by the system can have peaks or dips depending 
on the direction of the wave vector k, thus providing 
spatial quantization of the radiation. 

The method of computer simulation was used to 
study the behavior of the intensities of Stokes and anti-
Stokes components of radiation depending on the 
orientation of the wave vectors of light and sound 
synchronizing waves. In the simulation we used the 
following values of the parameters: speed of light of 
3 ⋅ 108, sonic speed of 2500, ω0 of 1015, ω of 1013, l of 0.1, 
b of 10$5

 (what corresponds to the dimensions of a laser 
beam). Below we present the directional patterns of the 
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scattering intensity as functions of the direction along 

which the synchronizing waves propagate through the 

substance. 
Figure 1 illustrates the case with a sound wave as 

a synchronizing wave. It should be considered separately, 
because it is most that frequent in practice. Actually, at 
the exposure of a substance to laser radiation, 
temperature gradient inevitably arises in the substance, 
what results in the appearance of sound waves. 

 
a 

 
b 

Fig. 1. Directional pattern of the scattering intensity of the 
Stokes (a) and anti-Stokes (b) components in the case of sonic 
synchronization. 

 
Fig. 2. Directional pattern of the scattering intensity of the 
Stokes (solid curve) and anti-Stokes (dashed curve) components 
in the case of light synchronization. 

Analysis of Eq. (12) shows that the maximum value 
of the intensity should be expected in the case when a 
sound  wave propagates at an angle to the direction of 

the wave vector of the external field with the direction 
cosine approximately equal 
 cos γak = v/c, (14) 

where v is the speed of sound wave propagation. 
In the case considered the Stokes component 

exceeds the anti-Stokes one by several orders of 
magnitude, what agrees well with the experiment. 

Figure 2 shows the directional pattern of the 
scattering intensity for the case when vibrations are 
synchronized by a light wave propagating in parallel to 
the external field. 

Figure 3 shows the directional pattern of the 
scattering intensity in the case of no correlation between 
vibrations of atoms. Besides the slight spatial 
quantization of the Stokes component, we can also 
explain the behavior of the anti-Stokes component. As 
seen from the figure, the radiation of the anti-Stokes 
component must be cone-shaped, what closely agrees with 
the experimental data on stimulated Raman scattering. 

 
a 

 
b 

Fig. 3. Directional pattern of the scattering intensity of the 
anti-Stokes (a) and Stokes (b) components in the case of no 
synchronizing waves. 
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