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The water vapor line shift coefficients were calculated and the analysis of main factors, affecting 
the value and sign of a shift was performed, using the Anderson impact theory. The vibrational and 
rotational dependences and the role of different terms of intramolecular potential was analyzed. It was 
shown that the compensation for different scattering channel contributions defines the variation of the 
shift coefficients with the increasing quantum number. In the calculations one fitted  parameter, the 
mean dipole polarizability of the upper vibrational state, has been used. Calculations are in a satisfactory 
agreement with the experimental data. 

 

I. Introduction 
 

There is a growing interest in measurements of 
line shifts of the atmospheric gases and in calculations 
including water vapor.  Accurate H2O line shifts 
induced by N2, O2, and air pressure are necessary for 
atmospheric optics applications. Investigation of H2O 
absorption line broadening and shifts is of current 
interest for the problems of remote sounding of 
atmospheric humidity fields by the differential 
absorption method.1 Neglecting the H2O line shift by 
air pressure can lead to systematic errors of 30 to 100% 
in retrieving the water vapor concentration at altitudes 
from 15 to 20 km.2 

At present the shift coefficients induced by 
pressure of different foreign gases were measured for 
many lines from MW to the visible spectral range.3$15

 

The experimental results available allow one to conclude 
that line shift has more complicated features when 
compared with line broadening and many non-essential 
for the width factors become important for the shift.  It 
is confirmed, for instance, by the fact of strong 
dependences of line shift coefficient on vibrational 
quantum number, type of foreign gas molecules, 
isotopic specie as well as temperature and pressure of 
the sample.3,14,16 As was noticed in Ref. 14, the line 
pressure shift coefficients can become the promising 
tool in molecular collision studies, since the pressure 
shift is more sensitive to the intramolecular interaction 
parameters and details of intramolecular motion than 
the line broadening. 

Theoretical investigations of the water vapor line 
shifts are presented by several calculations within the 
framework of Anderson method,17,18 QFT-method,19 
and Full Complex Robert$Bonamy (FCRB) theory,20$24 
but many published experimental results were not 
explained up to now. It is worth noting here that the 
accurate FCRB calculations were performed only for 
ν2, ν1, ν3, 3ν1 + ν3, and 2ν1 + 2ν2 + ν3 bands, the 
Anderson calculations were performed for MW,18 ν2, 
and some bands in the near IR and visible regions. 

This paper is aimed at the analysis of different 
factors, which play an important role in the H2O line 
shifts calculations. The calculations were performed by 
two methods: the Anderson one25,26 and cut-of-free27 
theory, not using perturbation theory in scattering 
matrix elements calculation.  Henceforth, for the sake 
of brevity, we shall name it as Cherkasov method.  
Since the results of calculations were found to be close 
in general, we have used the Anderson theory to make 
the result of analysis more illustrative. 

The analysis is organized as follows. In section II 
the brief outline of theoretical background and details 
of calculations is presented.  Section III contains 
applications to the H2O molecule. The first and second 
parts are devoted to the analysis of vibrational and 
rotational dependences of the line shift coefficients. 
Analysis of the last part is based on the consideration 
of scattering channel contributions. In the end of the 
third section large array of measured and calculated 
data for different H2O bands and different perturbing 
particles is presented. 

 

II. Theoretical background and details 
of calculations  

 

The semiclassical impact theories by Anderson25,26 
and Cherkasov27 were used for the water vapor line 
shifts calculations.  As usual, the general assumptions 
are the following: collisions are considered as binary, 
the duration of a collision is less than the time between 
collisions, the translational motions of particles are 
treated following the classical paths approximation, no 
line mixing effects occur.  In this case the spectral line 
halfwidth γif and the line center shift δif for the 
transition i → f, where i and f are the sets of quantum 
numbers of the initial and the final states, are given by 
the following formula26: 

   γif + iδif = 
n
c
 ∑

2

 ρ(2) ⌡⌠
0

∞

 
 dv v f(v) ⌡⌠

0

∞

 
 db b S(b), (1) 
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where i ≡ αi i 

ji mi; f ≡ αf i 

jf mf; 2 (2 ≡ βlμ) denotes the 

set of quantum numbers of perturbing molecule (j are 
quantum numbers of angular momentum, m are 
magnetic quantum numbers, and α are all other 
quantum numbers), n is the density of a buffer gas, 
f(v) is the Maxwell distribution function, b is the 
impact parameter.  According to Ref. 28, the general 
expression for efficiency function S(b) is as follows: 

 

Re S(b) = 1 $ [1 $ Re S′
 middle
2 (b)] exp {$Re Souter

2 (b) + 

 + S′′
 middle

2 (b)} cos {Im Souter
2 (b) + S1(b)} ; 

Im S(b) = [1 $ Re S′
 middle
2 (b)] exp {$Re Souter

2 (b) + 

 + S′′
 middle

2 (b)} sin {Im Souter
2 (b) + S1(b)}, (2) 

 

where S1(b) ,  S2(b) are the well known first- and 
second-order œinterruptionB functions from the 
Anderson theory. Primed and doubly primed terms 
correspond to BlinkedB and BconnectedB diagram 
contributions of the perturbation theory. 

The interruption function in the Anderson method 
results from perturbation expansion and can be 
represented as  

 

 S(b) = S1(b) + S2(b) + ... . (3) 
 

The first-order term S1(b) is responsible for the 
adiabatic effect and is defined by the isotropic part of 
the intermolecular potential only. In the case of 
collision polar H2O molecule with non-polar molecule 
N2, the S1(b) term can be written as  

 

 S1(b) = $ 
3π

8�vb5
 α2 ⎩

⎨
⎧〈Vi⏐μ2⏐Vi 〉

 
$
 
〈Vf⏐μ2⏐Vf 〉 + 

 + 
⎭
⎬
⎫3εε2

2(ε + ε2)
 [〈Vi⏐α⏐Vi 〉 $ 〈Vf⏐α⏐Vf 〉]  .  (4) 

In Eq. (4) α, μ, and ε are the polarizability, 
dipole moment, and ionization potential of the H2O 
molecule, respectively, α2 and ε2 are the polarizability 
and ionization potential of the perturbing molecule. 
The second-order term consists of three parts:  

 

 S2(b) = Souter
2i (b) + Souter

2f (b)* + Smiddle
2 (b), (5) 

where 

 Souter
2i (b) = ∑

l1l2

 
Al1l2

�
2v2b2(l1 + l2) ∑

2′

 D2(22′⏐l2) × 

 × ∑
i′

 D2(ii′⏐l1) ϕl1l2
 (kii′22′); (6) 

the term Souter
2i (b) is obtained from Eq. (6) replacing i 

by f; l1 and l2 denote the type of interaction: l1 = 1, 
l2 = 1 correspond to dipole-dipole interaction, l1 = 1, 
l2 = 2 correspond to dipole-quadrupole interaction, an 
asterisk means the complex conjugate value; 

 D2(ii′⏐l) = (νi ji r || Šl || ν′i j′i r′)2/(2ji + 1) (7) 

are the transition moments and (νi ji r || Šl || ν′i j′i r′) are 
the reduced matrix elements of the irreducible tensor 
operator Tl of the rank l; r and r′ denote the sets of all 
other quantum numbers except for J. The factors `l1l2 

are chosen in such a way that Re ϕl1l2
(0) = 1; 

ϕl1l2
(kii′22′) are the complex resonance functions  

 

 ϕl1l2
(k) = fl1l2(k) + iIfl1l2(k), (8) 

 

which depend on the adiabatic parameter 
 

 kii′22′ = 
2πcb

v
 (ωii′ + ω22′), (9) 

 

where ωii′ and ω22′ are the transition frequencies in the 
absorbing and perturbing molecules, respectively. The 

same expression holds true for Souter
2f (b) term. For the 

electrostatic potential (dipole-quadrupole and 
quadrupole-quadrupole interactions in our case) the 
functions If(k) were calculated according to Ref. 28, 
for the induction and dispersion potential the imaginary 
part of resonance functions was calculated in Refs. 38. 

The expressions for Smiddle
2 (b) are similar. 

Expression for S(b) is invalid when b is small. We 
have used the cut procedure when b0 is determined 
from the equation 

 Re S(b0) = 1. (10) 

S(b) = 1 for b ≤ b0 and S(b) is defined by formula (2) 
for b > b0. Molecular parameters of H2O, N2, and O2 
molecules are presented in Table 1. 
 
Table 1. Molecular parameters of H2O, N2, and O2 molecules 

 

Parameter H2O N2 O2 

μ, D 1.859 0 0 

q, DD 2.9 3 0.7 

Ω, DD2 2 0 0 

Φ, DD3 0 6 8 

α, 10$25 cm3 14.69 17.6 16.1 

ε, 10$11 erg 2.018 2.485 2.003 

B0, cm$1 $ 1.998 1.4456 

D0, cm$1 $ 5.76 ⋅ 10$6 4.839 ⋅ 10$6 

J
max

2  10 30 30 

 

The H2O molecular constants: dipole moments in 
the ground and in the first excited vibrational states 
were taken from Ref. 29, components of quadrupole 
moments $ from Ref. 30, the dipole polarizability in 
the ground vibrational state $ from Ref. 31. 

The wave functions needed for determination of the 
matrix elements were calculated using the Watson 
rotational Hamiltonian, no Coriolis, Darling$Dennison or 
Fermi-type resonances were accounted for. The i → i′, 
f → f′ transitions, which are non-diagonal in vibrational 
quantum numbers, were neglected since they are much 
weaker than the pure rotational transitions. On the other 
hand, the corresponding transition frequencies ωii′ and 
ωff ′ are large and this leads to small values of the 
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resonance functions and, as a consequence, to only 
small contribution to the shift value. To take into 
account centrifugal distortion corrections, we have used 
the effective dipole moment operator of the form34:   

 μ = mV
xϕx + mV

x,x {ϕx,J2
x} + mV

x,y {ϕx,J2
y} + mV

x,z {ϕx,J2
z} + 

 + mV
y,xy {ϕy, {Jx,Jy}} + mV

z,xz {ϕz, {Jx,Jz}}, (11) 

where m are the numerical parameters dependent on 
vibrational state and Jx, Jy, Jz are the angular 
momentum operators. The mean dipole moment mV

x  for 
excited vibrational states was calculated according to 
formula 

 mV
x  = 〈V⏐μ⏐V〉 = μe + μ1v1 + μ2v2 + μ3v3  (12) 

with the constants μ� = $ 1.85498; μ1 = $ 0.00508; 
μ2 = $ 0.03166; μ3 = $ 0.02246 D taken from Ref. 35. 
Other constants in Eq. (11) were assumed to be 
independent on vibrational state.34 The quadrupole 
moment transition strengths for H2O molecule have 
been calculated in the rigid rotor approximation.  
 

 
 

Fig. 1.  Measured and calculated by two methods (Anderson 
and cut of free ones) line shift coefficients for R($1, 1) [J 1 
J $ 1 ← J $ 1 2 J $ 2] and R(1, 1) [J 2 J $ 1 ← J $ 1 1 J $
 2] sub-branches. 
 

Since the comparison of line shift coefficients 
calculated by Anderson and Cherkasov (without cut 
procedure) methods shows their good agreement, we 
have used in the following analysis the Anderson 

method only.  This method allows one to calculate 
separately different scattering channels and different 
interaction contributions. It is essential for the analysis 
of vibrational and rotational dependences of a line 
shift. 

 

III. H2O molecule line shifts 

Vibrational dependence 

 
As it has already been mentioned, the 

contributions of different terms of electrostatic 
potential for the H2O $ H2O, H2O $ N2, and H2O $ 
O2 collisions were calculated separately. We have 
included into consideration the dipole-dipole, dipole-
quadrupole, quadrupole-quadrupole, dipole-
hexadecapole interactions, as well as the induction and 
dispersion terms of the polarization potential. For the 
case of the H2O $ N2 and H2O $ O2 collisions the 
calculations show that the main contribution to 
broadening and shifts of the pure rotational as well as 
belonging to fundamental bands transitions is due to 
interaction between the dipole moment of water and 
the quadrupole moment of nitrogen. The dipole$dipole 
interaction is the main term in the intramolecular 
potential which is responsible for the H2O$H2O 
broadening and shift in the low frequency region. 

During the calculations the vibrational 
dependence of the molecular parameters such as the 
mean polarizabilities 〈Vi⏐α⏐Vi〉 and 〈Vf⏐α⏐Vf〉, the 

dipole moments 〈Vi⏐μ
2⏐Vi〉 and 〈Vf⏐μ

2⏐Vf〉, transition 

probabilities D2(ii′⏐l1) and D2(ff′⏐l1) as well as 
frequencies ωii′ and ωff ′ have to be taken into account.  
For pure rotational transitions or for the transitions 
between the low lying vibration states the difference 
between mean polarizabilities of the upper and lower 
states is small, hence the S1(b) is small or even equal 
to zero. So the shift is determined mainly by the 
imaginary part of the S2(b). Vibrational excitation 
leads to the growth of the mean polarizability and, as a 
consequence, to an increase in the contribution to the 
shift value. The contribution from the S1(b) term then 
becomes strongly dependent on variation of the 
vibrational quantum numbers. The vibrational 
excitation changes also the second-order term S2(b) 
through the variation of the mean dipole moments as 
well as of the rotational and centrifugal distortion 
constants of the upper vibrational state. These effects 
become significant factors for line shifts of high 
overtones in the H2O molecule, where the line shift is 
formed, in general, by the isotropic part of the 
intermolecular potential S1(b) (S1(b) is always 
negative) depending on the mean dipole polarizability 
in the upper vibrational state (see Fig. 2b). The same 
conclusion was drawn in Ref. 20, where the 
calculations were performed by Robert$Bonamy method 
that includes the short range forces into consideration. 

Contributions to line shift coefficient from 
different parts of the intermolecular potential for two 
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bands: 3ν1 + ν3 and ν2 are presented in Fig. 2. It can be 
seen that in the 3ν1 + ν3 band the J-dependence of a 
shift is mainly determined by the contribution coming 
from the polarization potential, in the ν2 band $ from 
the electrostatic potential, namely, from the dipole-
quadrupole interaction. 

 

 
Fig. 2. Contributions to the line shift coefficient coming from 
different parts of the intermolecular potential for 3ν1 + ν3 and 
ν2 bands. 

Rotational dependence of a shift and 
compensation for scattering channel 

contributions  

Whereas the rotational dependence of the H2O 
line broadening was a subject of a number of 
publications (see, for example, Ref. 9), there was no 
special study of rotational dependence of the water 
vapor line shift coefficient and its behavior at high 
values of rotational quantum numbers. 

From the first sight, the behavior of measured line 
shift coefficients as a function of quantum number J 
looks chaotic: there is no definite J-dependencies.  But 
if one selects the definite sub-branches according to 
definite combinations of the quantum numbers, such 
dependences are clearly seen.  We selected different 
sub-branches in R$branch of ν2 band: R(1, 1), R(1, 
$1), R($1, 1), R(3, $1) (the first figure in parentheses 
equals to the change of Ka, the second $ Kc). The set 
of sub-branches with different Ka quantum numbers is 

presented in Fig. 3. Such selection of the sub-branches 
allows us to explain  the rotational dependence of a 
shift based on analysis of contributions from the 
scattering channel. 

Molecular collisions result in mixing of different 
stationary state wave functions and thus one can say 
about collisionally induced transitions which reduce the 
level lifetime and lead to the additional line broadening 
and shift.  The formulas of Anderson theory can be 
presented in the form which allows one to calculate 
separately contributions from different scattering 
channels. Traditionally one says about a scattering 
channel when two levels are connected by collisionally 
induced virtual transition. Henceforth we will use this 
terminology despite the fact that the transitions, which 
really take place, should interrupt the radiation process 
at a given frequency. 

 

 
 

Fig. 3. Calculated line shift coefficients for R(1, 1) and 
R(3, $1) sub-branches. 
 

It is obvious, that the contribution to the line 
width from each channel is positive. 

As for the line shift, the contributions from 
different transitions may have opposite signs because 
the imaginary part of the resonance function is odd 
(depending on the sign of energy balance of the 
absorbing and perturbing molecules) and, as a 
concequence, partially cancel each other.  
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The contribution of a single scattering channel 
i → i′ connected with the leading dipole-quadrupole 
interaction can be obtained from Eqs. (3)$(9) 

 

 δif = δ(1)
i  $ δ(1)

f  +∑
i′

 D(ii′⏐1) Pdq(ωii′) $ ∑
i′

 D(ff′⏐1) × 

 × Pdq(ωff ′) = δ(1)
i  $ δ(1)

f  + ∑
i′

 δii′
dq $ ∑

f ′

 δff
 

′
qq, (13) 

and Pdq(ω) depends on the parameters of perturbing 
particle and on the collision details (henceforth ω 
labels  ωii′ or ωff ′): 

 Pdq(ω) = $Adq 
n

�
2c

 ∑
2

 ρ2 ∑
2′

 D(22′⏐2) ⌡⌠
0

∞

 
 vf(v) dv × 

 × ⌡⌠
b0

∞

 
 

db
v2b5 If2 ⎝

⎛
⎠
⎞2πcb

v
 (ω + ω22′)  . (14) 

The function Pdq(ω) can be regarded as the effectiveness 
of the i → i′ channel in shifts and it gives the BweightB of 
the transition considered in the line shift.  

As was shown in Ref. 16, by direct calculations of 

δii′
dq and δff

 

′
qq, there is a compensation for the scattering 

channel contributions: the contribution of an individual 
channel to the line shift is often larger than the value 
of the line shift, but the contributions of different 
channels have different signs and they can partially 
cancel each other. The scheme of rotational levels for 
two different transitions in the ν2 + ν3 band is depicted 
in Fig. 4.   

 

 
Fig. 4. The scheme of rotational levels of an absorbing 
molecule for two transitions with different values J in the 
band ν1 + ν3: J = 4 (a) and J = 17 (b). 
 

The bar width is proportional to the scattering 
channel contribution value. It is seen that several 
leading contributions almost compensate each other so 
their total contribution to the shift becomes 
substantially smaller than some of the partial 
contributions. Besides, it can be seen that the 
compensation increases with the increasing rotational 
quantum number and, as a consequence, the 

electrostatic potential contributions are close to zero for 
the high J-values. Line shift coefficient is mainly 
determined by isotropic potential contribution. 

According to Eqs. (13) and (14) the partial 
contribution is determined by direct product of 
D2(ii′⏐1)/(2Ji + 1) and Pdq(ω). Although the 
function Pdq(ω) is a smooth function for the H2O $ N2 
system  the J-dependence of the line shift coefficient is 
determined, first of all, by J-dependence of the dipole 
strengths. 

Comparison of calculated shift values with the 
experimental data 

Calculations of the line shift coefficients based on 
Anderson method were performed for water vapor lines 
broadened by N2, O2, and air in a wide spectral region 
from far IR to the visible range (Table 2). Line shift 
coefficients for the ν2 + ν3, 2ν2 + ν3, ν1 + ν3, 2ν1, 
ν1 + ν2 + ν3, ν2 + 2ν3 bands are presented in Table 3. 
The line shift coefficients in low frequency range are 
small (typically 10$3 cm$1) and can be positive or 
negative, the situation is different in high frequency 
region where line shifts are always negative and have 
large values. 

 
 

Table 2. The water vapor bands studied within Anderson 
theory 

 

v1 v2 v3 Band 

center, cm$1

Number of 

lines 

Pertuber References

010 1594 70 N2 9 

110 5234 10 O2 39 

011 5331 28 O2 & 

  39 N2 this paper

021 6871 20 N2 & 

200 7201 12 N2 & 

101 7249 25 N2 & 

012 9000 2 N2 & 

111 8807 36 N2 & 

301 13830 103 N2 14 

   O2 & 

   air & 

221 13652 42 N2 & 

   O2 & 

   air & 

202 13828 15 N2 & 

   O2 & 

   air & 

103 14318 3 N2 & 

   O2 & 

   air & 

401 17495 7 N2 & 

   O2 & 

   air & 
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Table 3.  The experimental and calculated line shift coefficients by nitrogen pressure (10$3 ⋅ cm$1/atm) 

Line position, “m$1 v1 v2 v3 J′′ K′′
a
 K′′

c
 J′ K′

a
 K′

c
 Experiment Ref. 10 2σ Calculation

1 2 3 4 5 6 7 8 9 10 11 

2 μm 
5107.0703 011 9 3 7 10 3 8 $5.8 0.9 $10.0 
5152.0993 011 7 1 6 8 1 7 $10.9 0.5 $10.6 
5166.1931 011 7 5 3 8 5 4 $10.7 0.7 $11.0 
5178.0992 011 6 4 2 7 4 3 $11.4 0.3 $8.6 
5189.7198 011 5 3 2 6 3 3 $6.0 0.2 $5.3 
5191.8791 011 6 5 1 7 5 2 $7.3 0.4 $11.8 
5226.3515 011 4 1 4 5 1 5 $7.6 0.1 $8.0 
5250.3091 011 4 0 4 4 2 3 $8.0 2.5 $11.3 
5282.9623 011 6 2 5 6 2 4 $11.0 0.7 $4.8 
5284.7803 011 1 0 1 2 0 2 $10.1 0.2 $7.9 
5328.6310 011 6 3 4 6 3 3 $8.3 0.4 $5.5 
5350.5344 011 6 4 3 6 4 2 $9.3 0.2 $10.7 
5361.5245 011 7 5 3 7 5 2 $9.0 0.2 $12.6 
5361.8928 011 7 5 2 7 5 3 $13.4 0.6 $11.1 
5405.2906 011 5 1 4 5 1 5 $5.8 0.3 $7.9 
5442.1522 011 4 3 1 3 3 0 $10.1 0.1 $10.5 
5469.5269 011 6 2 5 5 2 4 $7.1 0.1 $6.7 
5498.9953 011 6 4 2 5 4 1 $7.2 0.1 $9.4 
5505.5546 011 8 2 7 7 2 6 $8.0 0.1 $8.0 
5518.2874 011 7 3 4 1 3 3 $8.4 0.2 $6.0 
5521.1385 011 7 4 4 6 4 3 $10.9 0.1 $10.2 
5521.9039 011 9 2 8 8 2 7 $9.2 0.1 $8.7 
5523.1329 011 9 1 8 8 1 7 $5.0 0.2 $7.2 
5523.4538 011 7 4 3 6 4 2 $7.7 0.2 $6.9 
5527.8448 011 8 3 6 7 3 5 $12.2 0.2 $9.6 
5536.3074 011 8 2 6 7 2 5 $8.2 0.1 $5.5 
5537.5414 011 10 2 9 9 2 8 $9.4 0.3 $9.7 
5538.1290 011 10 1 9 9 1 8 $7.1 0.1 $8.4 
5543.4219 011 8 4 5 7 4 4 $12.8 0.4 $10.0 
5548.6557 011 8 4 4 7 4 3 $5.3 0.1 $5.7 
5564.8228 011 9 4 6 8 4 5 $11.3 0.2 $10.5 
5582.1670 011 11 3 9 10 3 8 $12.2 0.5 $11.9 
5595.5578 011 10 3 7 9 3 6 $10.6 0.4 $7.8 

1.4 μm 
6705.0390 021 7 1 7 8 1 8 $10.7 0.7 $7.6 
6726.2494 021 6 0 6 7 0 7 $12.2 0.1 $8.1 
6727.2326 021 6 1 6 7 1 7 $12.2 0.5 $7.7 
6748.8902 021 5 1 5 6 1 6 $8.3 0.3 $7.9 
6753.5782 021 5 2 4 6 2 5 $3.7 0.5 $5.8 
6799.3729 021 2 1 1 3 1 2 0.7 0.2 $1.7 
6812.8111 021 2 1 2 3 1 3 $4.5 0.4 $5.8 
6847.7267 021 0 0 0 1 0 1 $0.2 0.2 $0.6 
6893.6485 021 2 2 0 2 2 1 $5.4 0.2 $1.0 
6914.5496 021 4 3 2 4 3 1 $5.8 0.8 $5.7 
6917.3693 021 2 0 2 1 0 1 1.5 0.2 1.7 
6917.9525 021 2 1 2 1 1 1 $5.0 0.6 $3.5 
6930.3670 021 2 1 1 1 1 0 $5.7 0.2 $6.5 
6955.1576 021 4 0 4 3 0 3 0.2 0.1 $0.7 
6956.3153 021 3 1 2 2 1 1 $5.3 0.4 $5.5 
6963.1689 021 3 2 2 2 2 1 $3.8 0.3 $4.9 
7004.2280 021 5 1 4 4 1 3 $0.6 0.6 $1.7 
7006.1275 021 5 2 4 4 2 3 $6.9 0.2 $5.3 
7025.3840 021 6 1 5 5 1 4 $2.5 0.3 $2.4 
7034.4755 200 5 1 4 6 2 5 $10.1 0.4 $10.2 
7063.1299 021 8 1 7 7 1 6 $5.8 0.9 $5.6 
7070.7840 101 6 1 5 7 1 6 $11.6 0.1 $9.6 
7079.1767 200 6 1 6 6 2 5 $5.8 0.9 $6.0 
7080.5751 101 5 3 3 6 3 4 $4.4 0.1 $6.9 
7104.6194 101 4 3 1 5 3 2 $3.8 0.2 $5.3 
7108.7153 200 3 0 3 4 1 4 $10.9 0.2 $10.0 
7120.3580 101 4 2 3 5 2 4 $8.0 0.2 $7.0 
7127.0355 200 2 0 2 3 1 3 $8.0 0.4 $11.5 
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Table 3 (Continued)

1 2 3 4 5 6 7 8 9 10 11 

7131.9505 200 3 1 3 3 2 2 $8.7 0.3 $9.6 
7133.9031 101 3 3 0 4 3 1 $5.1 0.2 $4.1 
7134.9821 101 3 3 1 4 3 2 $5.7 0.9 $4.6 
7136.0941 101 3 2 1 4 2 2 $5.2 0.2 $5.3 
7165.8211 101 2 2 0 3 2 1 $5.1 0.2 $6.3 
7202.9098 101 1 0 1 2 0 2 $10.5 0.1 $9.0 
7216.1909 101 5 4 1 5 4 2 $8.0 0.3 $8.6 
7227.9685 101 4 3 2 4 3 1 $8.8 0.1 $7.8 
7236.4474 200 2 2 0 2 1 1 $4.0 0.3 $2.0 
7240.4159 101 2 2 1 2 2 0 $7.8 0.0 $7.6 
7249.9247 200 2 2 1 2 1 2 $6.1 0.3 $7.5 
7266.6518 200 3 3 1 3 2 2 $5.8 0.5 $0.0 
7281.0820 200 4 1 4 3 0 3 $1.3 0.1 0.9 
7283.7319 101 6 2 4 6 2 5 $5.0 0.2 $7.7 
7286.0516 200 6 2 5 6 1 6 $4.3 0.9 $7.1 
7305.0814 200 6 0 6 5 1 5 $8.0 0.4 $4.9 
7312.1963 101 3 0 3 2 0 2 $3.9 2.0 $1.9 
7323.9579 101 4 1 4 3 1 3 $6.9 0.1 $4.3 
7331.7156 200 8 1 8 7 0 7 $10.0 0.4 $6.8 
7348.4037 101 5 2 4 4 2 3 $12.3 0.3 $7.8 
7351.4852 101 5 3 2 4 3 1 $5.8 0.2 $8.3 
7359.3343 101 6 4 2 5 4 1 $6.7 0.2 $8.9 
7378.6791 101 7 4 4 6 4 3 $10.2 0.2 $9.9 
7397.5754 101 8 1 7 7 1 6 $6.5 0.1 $6.4 
7403.6163 101 8 4 4 7 4 3 $4.1 0.3 $6.6 
7406.0282 101 9 2 8 8 2 7 $13.8 0.2 $10.4 
7407.7830 101 9 1 8 8 1 7 $8.4 0.4 $8.1 
7413.0192 101 9 4 6 8 4 5 $12.8 0.6 $11.6 
7417.8213 101 10 1 9 9 1 8 $7.6 0.3 $10.0 
7419.1750 101 8 3 5 7 3 4 $11.4 0.3 $7.3 

1 μm 
8636.7581 111 6 1 5 7 1 6 $12.3 0.8 $11.6 
8665.1311 111 5 2 4 6 2 5 $7.0 0.4 $9.8 
8675.7803 111 5 1 5 6 1 6 $14.3 0.2 $11.3 
8680.2591 111 4 1 3 5 1 4 $6.8 0.2 $8.7 
8696.9877 111 4 0 4 5 0 5 $10.8 0.2 $10.9 
8713.6592 111 3 2 2 4 2 3 $5.2 0.3 $6.7 
8717.9110 111 3 0 3 4 0 4 $9.9 0.3 $10.3 
8730.1318 111 2 1 1 3 1 2 $4.1 0.4 $4.3 
8733.8083 111 2 2 0 3 2 1 $7.1 0.1 $6.6 
8742.9292 111 2 1 2 3 1 3 $9.6 0.4 $8.8 
8754.9302 111 1 0 1 2 1 1 $3.8 0.4 $4.8 
8760.1410 111 1 0 1 2 0 2 $10.3 0.4 $10.0 
8765.0406 111 1 1 1 2 1 1 $4.5 0.1 $7.5 
8811.0630 111 2 2 0 2 2 1 $4.9 0.02 $6.4 
8812.0143 111 4 3 1 4 3 2 $6.7 0.2 $8.6 
8821.9196 111 5 5 0 5 5 1B $14.2 0.6 $17.8 

 111 5 5 1 5 5 0B    
8830.2319 111 1 0 1 0 0 0 $8.0 1.2 $8.0 

8848.0705 111 2 1 2 1 1 1 $6.6 0.4 $6.2 

8866.1671 111 3 1 3 2 1 2 $6.5 0.2 $5.2 

8869.8731 111 3 0 3 2 0 2 $3.0 0.2 $3.0 

8879.1198 111 3 2 2 2 2 1 $7.0 0.1 $8.5 

8882.8726 111 4 1 4 3 1 3 $5.2 0.2 $5.5 

8885.5740 111 4 0 4 3 0 3 $3.9 0.1 $3.5 

8898.1943 111 5 1 5 4 1 4 $5.8 0.3 $6.1 

8899.1304 111 4 2 3 3 2 2 $8.7 0.4 $8.9 

8912.2568 111 6 1 6 5 1 5 $9.8 0.3 $7.3 

8912.9834 111 6 0 6 5 0 5 $7.9 0.1 $6.3 

8917.6803 111 5 2 4 4 2 3 $11.3 0.2 $9.0 

8925.2222 111 7 1 7 6 1 6 $8.2 0.2 $8.9 

8928.4787 111 5 3 3 4 3 2 $9.9 1.2 $12.3 

8933.4633 111 5 2 3 4 2 2 $7.2 0.5 $8.6 
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Table 3 (Continued)

1 2 3 4 5 6 7 8 9 10 11 

8934.7405 111 6 2 5 5 2 4 $12.0 0.6 $9.7 

8948.4417 111 9 1 9 8 1 8 $12.4 0.5 $12.2 

8950.3347 111 7 2 6 6 2 5 $13.3 0.3 $10.6 

8956.2946 111 6 3 3 5 3 2 $7.5 0.4 $8.7 

9350.3986 012 7 7 0 6 6 1B    

 012 7 7 1 6 6 0B $27 3 $27 
 

   N o t e . B $ blended lines. 
 

Figure 5 presents J-dependence of the R(1, 1) 
sub-branches for the ν1 + ν2 + ν3, 2ν1 + 2ν2 + ν3, and 
3ν1 + ν3 

bands. It can be seen from the figure that the 
rotational dependences of the similar transitions from 
different bands are alike but the lines with higher 
energy of the upper state have additional negative shift 
due to contribution of isotropic term of the 
intermolecular potential. Only one fitting parameter $ 
the mean dipole polarizability in the upper state 
disturbed by incorrectness of the cut-procedure and 
short range effects of collisions was used in the 
calculations. For the H2O$O2 collision this parameter 
was taken from the H2O$N2 collision so this 
calculation can be regarded as predictable. 

 

 
 

Fig. 5. The J-dependence of R (1, 1) sub$branches for the 
ν1 + ν2 + ν3, 2ν1 + 2ν2 + ν3, and 3ν1 + ν3 bands.  
 

The agreement between calculations and 
experiment can be characterized by statistics of the 
observed and calculated values.  The deviation from 

measured data for all water vapor lines presented in the 
Table 3 is given below: 

 
 Δ ≤ 0.0015 . . . . . . . . . . . 73% 

0.0015 < Δ ≤ 0.0030 . . . . . . . . . . . 18 
0.0030 < Δ ≤ 0.0045 . . . . . . . . . . . 6 
0.0045 < Δ ≤ 0.0060 . . . . . . . . . . . 3 
 

where Δ = ⏐δobs $ δcalc⏐.  
 

IV. Conclusion 
 
General conclusion which should be drawn from 

the experimental and calculated data available is that 
the water vapor line shifts can be characterized by 
strong vibrational and rotational dependences. 
Anderson theory allowed us to explain these 
peculiarities and to make calculations with good 
accuracy using only one fitting parameter. In spite of 
the simplicity of the Anderson method there is quite 
good agreement  between the calculated and 
experimental line shift coefficients. The accuracy of the 
calculations is close to that of the calculations by Full 
Complex Implementation of Robert-Bonamy theory 
(FCRB), see Refs. 20$24.  

Further development of the line shift coefficient 
calculations must be connected with correct analysis of 
the semiclassical impact theory (correctness of the cut 
procedure, short range potential contribution, 
trajectory bending) and some other effects, such as 
intermolecular interactions, which are important for 
water vapor molecule. Some analysis of these effects 
has been performed in Refs. 20$24, 36$38. To account 
for the trajectory curvature properly, the exact 
solutions of classical dynamic equations describing the 
relative motion of colliding molecules have been used to 
calculate the first- and second-order terms of the 
interruption function in Refs. 36$37. The calculations 
of resonance functions for the induction and dispersion 
potential needed for obtaining of higher order terms 
were calculated in Refs. 20 and 38. 
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