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The paper describes the results of investigations in a rapidly progressing area of modern physics 
# singular optics.  Basic properties of optical vortices (wave front dislocations), which are the principal 
objects of the investigation, are presented. The vortices peculiarities connected with the coherent light 
propagation in an inhomogeneous medium are determined.  Initiation of the vortices is caused by the 
occurrence of isolated intensity zeros in an optical beam cross section that is the necessary condition of 
their existence. New theoretical approaches to the problem of dislocations are proposed, which is 
especially topical due to the necessity of improvement of atmospheric optical systems.  An efficiency of 
adaptive optics functioning is evaluated under conditions of strong intensity fluctuations in the turbulent 
atmosphere. 

 

The subjects of investigation in the field of 
propagation of coherent optical radiation in random 
inhomogeneous media have been formed over last two 
decades owing to the demands for modern practice.  
With advances in guided optical systems, a problem 
arose for studying fine structure of optical fields under 
conditions of strong intensity fluctuations I(x, y, z) of 
so-called speckle-fields, since in such fields the objects 
were revealed disturbing the regular character of 
surfaces of equal phase S(x, y, z) = const, which are 
not amenable to the traditional methods of 
compensation of distortions used in adaptive optics. 

Even the first works on dislocations done by 
D. Nai, M. Berry,1 N.B. Baranova, B. Ya. Zel’dovich2 
have revealed that the spatial distribution of 
dislocations reflects global structural peculiarities in 
the field configuration in heterogeneous media. In many 
cases the spatial distribution of dislocations is a basis of 
the field wave pattern.3$4 Therefore it is necessary to 
develop theoretical approaches describing in detail the 
conditions of formation and the spatial dynamics of 
dislocations in heterogeneous media taking into account 
different physical aspects of this phenomenon found by 
native and foreign researchers.5$12 

The distinction between these aspects is 
manifested in the variety of names used by researchers 
for denoting this phenomenon.  Apart from the name 
œdislocations of wave front” resulting from the 
similarity to the defects of crystal lattice, the terms 
œphase singularities,” œintensity zeros,” œoptical 
vortices” are used.  The name œoptical vortices” 
denoting the similarity of vector field of a phase 
gradient at points of intensity zeros to the vortex liquid 
flow has been widely used recently. 

A characteristic property of speckle-fields is the 
availability of isolated points in the transverse plane 
where the intensity is reduced to zero, the phase is not 
determined, and the integration of ∇⊥ S(ρ, z) over a 
closed circuit surrounding this point gives nonzero 
circulation 

  o ⌡⌠
Γ

 

 
∇⊥ S(ρ, z) dl = 2πm,    (1) 

where ρ = {x, y}; m is a topological charge, a positive 
or negative integer.  The behavior of intensity and the 
Poynting vector in the vicinity of zero point (m = 1) is 
represented in the form 

 I ≅ ax x2 + ay y2 + axy xy ,   P⊥ ≅ $ ex ay + ey ax. (2) 

Whence it follows that at zero point and in its vicinity 

 | P⊥ | ≅ a | ρ | ,   rot P⊥ = 2a ez.   (3) 

Equating the expansion (2) for the intensity to zero, 
we obtain the equation of degenerate curve of the 
second order. In this case the invariant D of this curve 

 D = 
 ax axy

 axy ay

 = a2 

may be larger or equal to zero.  The condition D > 0 
corresponds to the requirement that the intensity tends 
to zero at an isolated point ρ = 0 and we deal with the 
screw dislocation.  The condition D = 0 corresponds to 
the case of intensity vanishing on the line passing 
through the point ρ = 0.  For this case rotP⊥ = 0, and 
the phase distribution has no peculiarities typical for 
the screw dislocation.  Such a situation is observed, for 
example, at radiation diffraction on round or 
rectangular holes when the intensity becomes zero on 
closed lines or lines becoming infinite. 

As is seen from Ref. 4, the physical reason of 
occurrence of optical vortices is the field interference 
from different parts of the aberration wave front.  This 
fact makes possible different approaches to the analysis 
of the speckle-field behavior.  It is evident that the 
simplest is the numerical analysis of interference field 
from several (as minimum three) sources of plane and 
spherical waves.13,14  A disadvantage of this approach 
is that it does not allow one to follow the processes of 
initiation and annihilation of vortices.  For these 
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purposes the most suitable is the solution of the 
problem of diffraction for a beam with an aberration 
(nonparabolic) wave front, Refs. 8, 13, and 15.  
Optical vortices appear also at nonlinear beam 
refraction with an originally parabolic front.16  The 
most complicated problem is the investigation of a 
speckle-field behavior in a randomly heterogeneous 
medium.17 

The propagation of optical waves through a 
heterogeneous medium will be considered in the scalar 
approximation.  Note that the scalar formulation of the 
problem is sufficient to describe the interference and 
diffraction of waves.  Let us assume that the 
heterogeneous medium occupies a half-space z > 0 and 
the direction of propagation of an incident wave 
coincides with the direction of the axis z.  In this case 
the scattering by large angles is neglected.  Then for a 
complex amplitude of a monochromatic wave field 
U(ρ, z) we derive a parabolic wave equation 

 2ik 
∂U
∂z  + Δ⊥U + k2 ~ε(ρ, z) U(ρ, z) = 0,    (4) 

where Δ⊥ = 
∂2

∂x2 + 
∂2

∂y2 is the Laplacian transverse 

operator; k = 2πλ is the wave number corresponding to 

the wavelength λ; ~ε = 
ε $ 〈ε〉

〈ε〉 , 〈ε〉 is the average over 

the realization ensemble value of dielectric constant of 
a medium.  In the wave propagation theory Eq. (4) is 
widely used1; its applicability is connected with the 
requirement of inhomogeneities smoothness of a medium 
at the wavelength, the condition that the 
backscattering is small, and with transition to the 
Fresnel approximation of Green’s function. 

In particular, in vacuum (~ε = 0) the solution of 
Eq. (4) can be written as 

 U(ρ, z) = 
k

2πiz
 
⌡
⌠U0(ρ′)exp ⎣

⎡
⎦
⎤ik(ρ $ ρ′)2

2z
 dρ′,   (5) 

where U0(ρ′) = U(ρ′, z = 0) is the initial condition. 
Representing the field as U(ρ, z) = {I(ρ, z)}1/2 × 

× exp{iS(ρ, z)}, we can write an equivalent to Eq. (4) 
set of eikonal and transfer equations: 

  2kI2 
∂S
∂z + I2 {∇⊥ S}2 = k2

 I2
 

~ε(ρ, z) + 
1
2 I Δ⊥ 

I(ρ, z) $  

   $ 
1
4 {∇⊥ I(ρ, z)}2;   (6) 

  ∇⊥ {I(ρ, z) ∇⊥ S} = $k 
∂I
∂z.    (7) 

The quantity 

 P⊥ = I(ρ, z) ∇⊥ S(ρ, z) 

correct to the constant factor represents a mean over 
the period value of the Poynting vector transverse 
component.  In this case the longitudinal component 
Pz = kI.  For describing the optical wave propagation 

in a heterogeneous medium we use, as a rule, the 
numerical schemes of equation solution for a complex 
amplitude of a light field U(ρ, z) or its statistical 
moments.19  As a rule, when solving the propagation 
problems, Eqs. (6) and (7) are not used directly.  The 
diffraction beam method is widely used, which is based 
on the following equation20,21: 

 
d2ρ

 

dz2  = 

1
2 ∇⊥

~ε(ρ,
 

z) + 

1
4k2 ∇⊥ ⎩

⎨
⎧

⎭
⎬
⎫Δ⊥ 

I(ρ,
 
z)

I(ρ, z)
 $ 

1
2 

[∇⊥
 

I(ρ, z)]2

I2(ρ, z)
 , 

 (8) 

where ρ = ρ(z) is the running transverse coordinate of a 
diffraction beam derived from Eq. (6). Equation (8) 
relates the second derivative of a diffraction beam 
coordinate with the intensity.  A diffraction beam 
(streamline of energy) is the integral curve of the field 
of directions of the Poynting vector.  The direction of 
tangent at each point of the integral curve coincides 
with the direction of the vector of energy current 
density and simultaneously with the normal direction to 
the wave front at a given point.  According to this 
determination, the differential equation of the energy 
flow trajectory (Fig. 1) is of the form 

 
dρ
dz

 = 
P⊥(ρ, z)

Pz(ρ,z)
 = 

1
k
 ∇⊥S(ρ, z).    (9) 

 

 

 

Fig. 1. Behavior of the energy flow lines in the vicinity of 
dislocation. 

 

The phase sets natural parametrization on a given 
line3 since it is related with the wavelength by a simple 
differential equality 

 dS = k⏐θ⏐dl , 

where l is the line length; θ is the unit vector, whose 
direction coincides with the direction of the Poynting 
vector.  In the framework of paraxial approximation for 
changing the phase along the line of energy flow, the 
following equation 

 S = k 
⌡
⌠

z0

z1

 dz ⎣
⎡

⎦
⎤1 + 

1
2 ⎝
⎛

⎠
⎞dρ

dz

2
 = k 

⌡
⌠

z0

z1

 dz ⎣
⎡

⎦
⎤1 + 

1
2 (P⊥/kI)2  

is derived. 
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The phase difference between the two arbitrary 
points lying in one plane, normal to the axis of 
radiation propagation, can be calculated as follows: 

 ΔSpl = ⌡⌠
ρ1

ρ2

dl⊥∇⊥ S(ρ, z0) = ⌡⌠
ρ1

ρ2

Ι$1[Px dlx + Py dly], 

where dl1 = {dlx, dly} is the element of the line 
connecting the points ρ1 and ρ2; P⊥ = {Px, Py} is the 
transverse component of the Poynting vector.  Note 
that for the speckle-field this phase difference depends 
on selection of the line connecting these points.  For 
the two different lines the phase difference varies by 
even number of π, if the lines do not intersect the 
dislocations, and varies by odd number of π if one of 
the lines intersects one dislocation. 

The following phase calculations have been made.  
In the plane z = z0, the two points ρ01 and ρ02 were 
selected.  The phase difference between the points 
calculated in this plane along straight line connecting 
the points equals to zero. We calculated the trajectories 
of streamlines coming from the above points and 
intersecting the plane z = z1 at points ρ1 and ρ2 as well 
as the advances along these lines between the planes 
z = z0 and z = z1 (S1 is the phase advance along the 
first line, S2 is the phase advance along the second 
line).  Next the phase difference ΔSpl was calculated 
between the points ρ1 and ρ2 in the plane z = z1 along 
the direct line (not intersecting the dislocation).  For 
any pairs of lines we obtained the following 
relationships: 

 S1 $ S2 = ΔSpl + 2πn, 

where n is the integer. 
When approaching the initial point ρ01 to the 

dislocation, the number of turns of energy streamline  
around the dislocation between the fixed planes 
increased.  With increasing the number of such turns, n 
grows, and when ρ01 tends to the dislocation point, n 
tends to infinity. 

In each plane, normal to the axis of propagation, 
the streamlines of the vector field P⊥ can be 
introduced, for which the equation is of the form 

  
dx

dy
 = I(ρ, z) 

∂S(ρ,z)
∂x /⎣

⎡
⎦
⎤I(ρ, z) 

∂S(ρ,z)
∂y  .   (10) 

At the points, where the intensity goes to zero, 
the conditions of unambiguity and continuity of the 
right$hand sides of Eqs. (9) and (10) and their first 
derivatives are not fulfilled, therefore these points in 
the plane (x, y) (or the lines in space (x, y, z)) are the 
particular points of the vector field P⊥.22,23  When the 
number of such points is greatly increased, that is 
typical for the conditions of saturated intensity 
scintillations,6 the description of the wave field with 
the use of diffraction beams is just problematic.  This 
depends upon the fact that Eq. (8) is derived from 

Eq. (6) due to the effect of the operator ∇⊥ on Eq. (6).  
In this case in a rigorous expression 

 ∇⊥(∇⊥S)2 = 2(∇⊥S∇⊥)∇⊥S + 2∇⊥S × rot(∇⊥S) 

the second component is omitted.  However, the second 
component equals zero only in the case when the phase 
gradient field is potential, i.e., in the absence of 
dislocations. 

Therefore in Refs. 24 and 25 we propose a 
œhydrodynamic” approach for description of wave fields 
with wave front dislocations using a structural 
similarity of the vector field ∇⊥S and the vector field of 
rate of potential plane flow of compressible fluid.  In 
hydrodynamics26 the concept of œcircular flow from an 
isolated vortex” exists.  The vortex vector of such a 
flow equals zero everywhere except for a point of 
singularity where it tends to infinity.  In this case the 
total rate of fluid flow is the sum of the potential rate 
and the superposition of circular rates from the point 
vortices.  The vector field of the wave phase gradient 
with dislocations possesses these properties and allows 
the introduction based on the property (1) of the 
vortex vector (rotor) of the phase gradient: 

ezΩ(ξ, η, z) = rot{∇⊥S(ρ, z)} = ez2πmδ(x $ xd, y $ yd), 

where m is the positive or negative integer; δ(x, y) is 
the Dirac delta-function.  In  this case for a set of 
dislocations the following representation of phase 
gradient 

 ∇⊥S(ρ, z) = ∇⊥S∂(ρ, z) $  

  $ 
1
2 ⌡⌠

$∞

    ⌡⌠
∞

 dξ dη Ω(ξ, η, z) 
ex(y 

$ η) $ ey(x $ ξ)

(x $ ξ)2
 + (y $ η)2  ,  (11) 

can be written. ∇⊥ S∂(ρ, z) is the divergent part of 

gradient satisfying the condition 

 rot{∇⊥S∂(ρ, z)} = 0 .   (12) 

The relationships (6) and (7), characteristics of 
the vector field ∇⊥S(ρ, z), as well as the rules of 
differential transforms of vector fields have made it 
possible to obtain instead of the eikonal equation (6) 
the evolution equation of the phase gradient rotor 

 ez 

∂
∂z Ω(ρ, z) = 

  = 
1
4k

 ∇⊥ × ⎩
⎨
⎧

⎭
⎬
⎫

∇⊥ ⎣
⎡

⎦
⎤Δ⊥I(ρ, z)

I(ρ, z)
 $ 

1
2 

[∇⊥ I(ρ, z)]2

I2(ρ, z)
  . (13) 

Having introduced into consideration the density 
of œphase sources” 

 Q(ρ, z) = div {∇⊥S∂(ρ, z)}, 

we can write the following equation: 

k 

∂
∂z Q(ρ, z) + [Ω(ρ, z)]2 $ 

∂S
∂x 

∂
∂y Ω(ρ, z) + 

∂S
∂y 

∂
∂x Ω(ρ, z) + 
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+ 

∂
∂x {∇⊥S(ρ, z) ∇⊥} 

∂S
∂x + 

∂
∂y {∇⊥ 

S(ρ, z) ∇⊥}
∂S
∂y =  

  = 
1
2 Δ⊥ ⎩

⎨
⎧

⎭
⎬
⎫~ε(ρ, z) + 

1
2 

Δ⊥ 
I(ρ, z)

I(ρ, z)
 $ 

1
4 

[∇⊥ 
I(ρ, z)]2

I2(ρ, z)
.  (14) 

The phase gradient curl differs from zero on the 
lines of singularity of the right-hand side of Eq. (13) 
corresponding to intensity zeros $ zero lines.  For a 
numerical description of wave fields by means of a set 
obtained, the regularization of the right sides of singular 
equations (13) and (14) should be provided by the 
rules of regularization of generalized functions.27  In 
this case the unknown functions ∇⊥S∂(ρ, z) and 

Ω(ρ, z) are regularized automatically as a result of 
calculations.  The regularization of right sides can be 
made by their convolution as a œsmall cap”27: 

 ωε(x) = 
⎩
⎨
⎧Cε exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ 
ε2

ε2 $ ⏐x⏐2 ,⏐x⏐ ≤ ε,

0 ⏐x⏐ > ε,
 

where Cε is the normalizing constant. Figure 2 shows 

the form of the scalar function calculated for a singular 
phase of a Laguerre#Gaussian laser beam.23  It is 
suggested that the procedure of  regularization and 
calculation of the curl of a vector of phase gradient is 
fulfilled with 10% error.  The regularization suggests 
that Ω(ρ, z) takes the form of smooth œhills” and 

œvalleys” (corresponding to opposite directions of screw 
whirl) with the œheight” or œdepth” fitting the 
absolute value of the topological charge. 

 

a 

 

b 
 

Fig. 2. Phase singularities and the curl of phase gradient:  the 
initial distribution of a laser beam phase (a);  the regularized 
curl of phase gradient (b).  

As we have mentioned, the occurrence of optical 
vortices in the light wave is accompanied by formation 
of intensity zeros.  Taken alone, zero is  not an object 
that can be immediately recorded in the natural 
experiment.  Its localization is also problematic in the 
numerical experiments simulating the optical wave 
propagation in the turbulent medium.  This is 
associated with the fact that for such a simulation the 
net-point functions are used determined in the finite 
number of points.  The position of zeros, as a rule, does 
not coincide with these points.  Therefore, to record 
zeros, it is necessary to use the indirect criteria.  One of 
those is a well-known dichotomy of interference 
fringes.1,2  At points of real zeros we observe the 
bifurcation of maxima and minima of the interference 
pattern as well as the appearance and disappearance of 
interference fringes.  This criterion is not localized.  It 
can be observed and it indicates that the wave function 
has real zeros of the first order.  Figure 3 shows the 
behavior of interference fringes at the speckle-field 
interference with a plane wave. 

 

 

 
Fig. 3. The result of the speckle-field interference with a plane 
wave.  There are 16 dislocations of wave front on a given 
fragment. 

 

Branching of interference fringes at one point into 
three and more fringes is due to the presence of real 
zero of higher order at this point.  These fringes occur 
when the wave has a wide range of spatial frequencies 
that is  manifested in convergence and connection of 
lines of sign inversion.   

The focal spot from the aperture with zero at the 
center differs essentially from the spot when zero is 
absent.  When the lines of equal intensity are extended 
sufficiently and have the form of ellipse, the intensity 
along the main ellipse axis is close to zero. The 
maximum intensity values are observed in the fields 
removed from this axis. The Fourier transform from 
such a field is a doublet.28 Figure 4 shows the form of 
this doublet in a focal plane. 

In the case when the form of lines of equal 
intensity is close to a circular one, the intensity 
distribution in a focal plane is also circular.  This 
intensity distribution, minimal at the center and 
growing to the edges, results in the increase of the 
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second radial moments of inertia as compared with the 
Gaussian distribution. 

 

 

 
Fig. 4.  Intensity distribution in the focal spot from the 
aperture that has a phase dislocation of the first order. 

 

In the numerical experiment, the width of spots in 
the focal plane of subapertures of the Hartmann 
detector was estimated depending on the turbulence 
intensity for the situations when the intensity zeros are 
present or absent in the aperture.  The width was 
calculated as the mean ratio of the second radial 
moment of inertia to zero moment of the power 1/2.  
The number of experiments varied from 20 to 300 
depending on the presence of zero points in the 
aperture. The matrix order was equal to 96 and 
corresponded to one meter. 

We observed the continuous increase of the focal 
spot width or spectral width of spatial wave frequencies 
with intensity zeros throughout the entire range of 
coherence radius variation from weak to strong 
fluctuations of intensity.  There was also a tendency for 
saturation of the focal spot width with decreasing the 
coherence radius when the intensity zeros were missing 
from the subaperture.  Really, with strengthening the 
fluctuations, the absence of zero in subaperture becomes 
less probable, and hence the increase of the size of focal 
spots under these conditions occurs mainly at the cost 
of the increase of the number of real zeros.  This fact is 
consistent with the conclusion of the paper, Ref. 29, 
whereby the number of zeros is proportional to the 
width of the field angular spectrum if it has normal 
probability density. 

Besides, it has been known that the experimental 
data support the conclusion about the normality of 
probability density of an amplitude (level) logarithm in 
the cases when the first approximation of SPM is 
applicable.  But the normal law of level fluctuations 
allows no occurrence of intensity zero.  As noted in 

Ref. 30, after the occurrence of zeros the random 
process of level fluctuations ceases to be normal. 

The region where zeros began to occur might be of 
interest.  The results of the numerical experiment on 
correlation of the behavior of the plane wave 
scintillation index and the probability of occurrence of 
intensity zeros with increasing the turbulence intensity 
were published in the literature.6,31  In the region of 
large coherence radii corresponding to weak turbulence 
(i.e., the lack of zeros), the monotonic increase of the 
wave scintillation index is observed.  When the index 
is 0.7, the probability of occurrence of zeros increases 
by a factor of 30 with varying the coherence radius 
from 20 to 14 cm. 

We consider the propagation in a heterogeneous 
medium32 along the coordinate axis z of a Gaussian 

beam with a multiplier rn einθ in the initial plane z = 0: 

 W(r) = rn einθ exp 
⎩
⎨
⎧

⎭
⎬
⎫r2

2c2 $ ik 
r2

2R2 , 

where r and θ are the polar coordinates; c and R are 
the constants characterizing the initial beam width and 
the wave front curvature.  The introduced factor creates 
zero of nth order at the origin of the coordinates and 
the corresponding optical vortex around this zero.  Up 
to the definite distances, the vortex is retained at wave 
propagation in the heterogeneous medium.  The 
turbulence increase will eventually disturb the initial 
monotonic phase variation around zero point and the 
vortex will disappear.  To investigate this phenomenon, 
the numerical experiment was carried out.  The order of 
counts matrix equals 100 that provided adequacy of 
discrete functions to their continuous prototypes. Two 
phase screens were used for simulating the 
heterogeneous medium with the spectral density of the 
refractive index corresponding to atmospheric 
turbulence in an inertial interval.  The law of energy 
conservation was fulfilled in the model within the 
computer accuracy. 

In the numerical experiment, the path length was 
determined in the heterogeneous medium where the 
optical vortex in the Gaussian beam remained.  The 
presence of the vortex at wave propagation in the 
heterogeneous medium was defined visually based on 
the presence or absence of the monotonic phase function 
around the point of zero.  The two versions were 

considered, namely, the presence of the monotonic 
phase in the ring area where the wave intensity is large 
and in the small vicinity of zero point where the 
intensity is low. The probability of the vortex 
conservation was determined by the ratio of favorable 
cases to the sample volume being equal to 10. 

The analysis of the results indicates that the 
optical vortex with higher order keeps better, when 
propagating in the heterogeneous medium.  We know 
that the higher is the carrier frequency, the wider the 
range of modulating frequency without loss of 
characteristics of analytical signal of a modulated wave.  
Greater stability of the vortex in the beam central part 
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than in the ring area can be explained by a power-law 
spectrum of inhomogeneities of the medium refractive 
index.  With such a spectrum the large-scale 
inhomogeneities affect more highly the wave phase 
fluctuations. 

Because the concept of adaptive optics is based on 
the concepts of the type of œreference wave phase,” 
œphase corrector,” œwave front sensor”, it is not 
surprising that the problem of phase dislocations is 
closely connected with the problems of adaptive optics.  
In this case as a practical matter, the most important 
are the following problems: 

1) The degree of decrease in efficiency of existing 
methods and means of adaptive optics under the effect 
of phase dislocations; 

2) How to construct the sensor and the corrector 
of phase distortions for efficient work under these 
conditions; 

3) How the requirements must follow the basic 
technical characteristics of adaptive optical system 
intended for operation under conditions of strong 
intensity fluctuations. 

The literature33$35 provides answers to the first 
question.  In Refs. 33 and 34 it is shown, that the 
correction of only œvortex-free” part of the phase 
results in a marked decrease of phase correction 
efficiency of turbulent distortions beginning with the 
path lengths corresponding to the diffraction length on 
the coherence radius, i.e., practically when passing to 
the region of strong intensity fluctuations. 

At the same time, the amplitude-phase correction 
enables one to fully cancel the turbulent beam 
broadening, and an ideal phase correction remains 
nearly as efficient as the amplitude-phase one.  This 
conclusion agrees with the experimental results of 
Livermore laboratory.35   

Thus, the principles of construction of an adaptive 
system, intended for operation in the field of strong 
intensity fluctuations, with the availability of phase 
dislocations in the reference wave should differ from 
those intended for operation in the field of weak 
fluctuations.  First of all, this is true for the 
construction of the wave front sensor and its algorithm. 

The calculations made in Ref. 33 have shown that 
the occurrence of dislocations does not impose new 
requirements on the corrector design.  The corrector 
must be composite and the size of the element should 
be comparable with the coherence radius.  At the same 
time, the traditional approaches to the design of the 
phase sensor become inadequate.  In this case the two 
reasons are available.  First, almost all types of existing 
adaptive sensors are the sensors of local tilts but not 
the phase differences and, second, the existing 
algorithms of phase calculation over the entire aperture 
are intended for the œsmooth” phase. 

The basis for existing algorithms is an idea that 
the phase differences, summed over the closed contour, 
must give zero in the absence of errors and 
measurement noise.5,36,37  Mathematically,  this means 

that the circulation of the potential phase gradient 
equals zero.38  Nonzero value is interpreted as the 
measurement error, i.e., some discrepancy of the sensor 
algorithm.  Thus, the calculation algorithm of phase 
values attributed to subapertures must minimize the 
sum of squares of discrepancies or the related value. 

If inside the contour the dislocation is found, the 
proper sum is not equal to zero but 2π plus the 
measurement error.  In this case one can use an 
algorithm,39,40 which drops 2πn in calculating the 
discrepancies.  However, the problem occurs here 
associated with the fact that, when using the Hartmann 
sensor or a similar wave front sensor measuring the 
local tilts of the wave front, the estimation error of 
phase difference increases rapidly determined through 
the product of the local tilt and the subaperture size.33  
Indirectly it is also manifested in the relative decrease 
of the gain of the use of the compound adaptive mirror 
with the correction of local tilts and the piston phase as 
compared to the corrector, whose segments compensate 
only the piston phase.33 

As it has already been mentioned, the size of 
segment of the compound adaptive mirror, required for 
correcting turbulent distortions, is not varied when 
passing to the range of the intensity strong fluctuations 
(Fig. 5).  This is also valid as to the speed of operation 
of the adaptive system.33  Figure 5 shows the 
dependence of the normalized intensity of the point 
source image in a focal point of an adaptive telescope 
on the length of the turbulent layer through which the 
observation is made.  The aberration sensor is assumed 
to be ideal and the corrector $ to be compound, with 

the segment size d.  Here r0 = (0.49 k2 C
2
n L)$3/5 is the 

Fried radius; C
2
n is the structural constant of the 

refractive index. 
 

 

 

Fig. 5. The dependence of the Strehl parameter on the 

normalized path length L/(kr
2

0) in the adaptive system with 
the compound corrector.  The control of the corrector elements 
position is denoted by small circles, and the control of the 
above position and tilts is denoted by small squares; d is the 
size of the compound corrector element. 
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Thus, the problem lies in the design of the phase 
difference sensor.  The sensor would be optimal if it 
measured the phase difference between the central and 
all the other apertures.  In this case the wavelengths of 
the reference and corrected radiation must coincide.  
This problem can be solved using a certain 
interferometric sensor, which determines the phase 
difference based on the interference fringe position.  It 
is unclear how the intensity fluctuation will influence 
upon the operation of this sensor. Probably, the 
equalizing of the reference wave intensity using a 
certain nonlinear amplifier could solve this problem. 

As noted above, the occurrence of dislocations in 
the reference wave is possible not only as a result of 
random phase fluctuations but in some other cases, for 
example, when compensating thermal blooming in a 
regular medium. As was shown in Ref. 16, in the course 
of adaptive correction the phase dislocations may occur 
in the reference beam.  Besides, just the occurrence of 
phase dislocation in the reference beam is a mechanism 
determining the iteration or auto-oscillation modes of 
operation of the phase-coupling adaptive optical system 
at correction of thermal blooming. 
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