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Equations for the profiles of doublet and multiplet lines are obtained within the framework of the 
hard collision model. These equations take into account both the collisional narrowing and mixing of 
spectral lines. 

 

1. Introduction 
 
In recent years the quality of experimental data on 

spectral line profiles obtained in routine measurements 
by the methods of laser and Fourier transform 
spectroscopy has been significantly improved thus 
allowing more detailed consideration of collisional 
processes which influence a line shape. The direct effect 
of collisions of a molecule absorbing radiation with 
particles of a buffer gas on the width and shifting of 
homogeneously broadened spectral lines can now be 
measured accurate to ∼ 1% (Refs. 1 and 2). For 
inhomogeneously broadened lines at the pressure about 
100 to 200 Torr, the accuracy achieved in experiments 
requires more fine effects associated with translational 
motion of molecules to be taken into account. Such fine 
effects include the Dicke narrowing of lines,3$5 wind 
effect6 due to anisotropic perturbation of the moving 
absorbing molecule by atoms and molecules of the 
buffer gas, and mixing (spectral exchange, cross-
relaxation) within a group of overlapping lines.7$10

 If the 
mass of the perturbing particles is less than or 
comparable with the mass of the absorbing molecule, 
manifestations of the wind effect, such as asymmetry 
and shift of the line shape, due to the speed dependence 
of the broadening and shift constants11$13 and 
degeneration of energy levels by projections of the total 
angular momentum14 are significantly less pronounced 
than the Dicke narrowing observed in many 
experiments. Therefore, when dealing with light 
perturbing gases, thereafter we consider the 
perturbation to be  isotropic. 

As known, molecules of various symmetry have the 
hyperfine cluster structure of energy levels. A rigid 
asymmetric top at large values of the rotational 
quantum numbers presents the examples of double 
degenerate clusters, whereas 4-, 6-, and 8-degenerate 
clusters are typical of spherical tops.15 The distance 
between levels in a cluster can vary widely, but in most 
cases it does not exceed several hundredths or 
thousandths of reciprocal centimeter. As a result, 
multiplets arise in the IR and visible spectra unresolved 
within the Doppler line width. Because of large 
rotational moments, collisional widths for such 

multiplets are, as a rule, small, what leads to pronounced 
collisional narrowing of lines. 

Generally accepted models of hard5,16,17 and 
soft4,5,17 collisions obviously cannot be applied to 
processing of the profiles of such lines, because these 
models are applicable only to description of isolated 
lines in the absence of mixing. The well-known equations 
for the shape of mixed doublet lines7$9 can be applied 
only in the case of the Lorentz broadening, and they 
ignore the Dicke narrowing. In Ref. 2 the profile 
model taking into account both the collisional 
narrowing and mixing has been used for processing of 
experimental results on broadening of lines in the P- 
and R-branches of the ν3 band of q m4. However, this 
model is valid only for small cross-relaxation 
parameters, that is, for little pronounced mixing.  
The aim of this paper is a derivation of equations  
for profiles of close, overlapping, and unresolved 
doublet and multiplet lines subject to mixing and 
collisional narrowing. The equations to be derived must 
be applicable to arbitrary cross-relaxation parameters of 
lines. 

 

2. Profile of a group  
of overlapping lines 

 

In the model of hard collisions and non-degenerate 
states and in the approximation of a linear field, the 
equations for the off-diagonal elements of the density 
matrix or (accurate to a factor) polarizations of 
transitions with allowance for mixing and collisional 
narrowing of a group of l close or coincident lines 
have the following form11: 

[νm $ i(Ωm $ kv)]Rm $ W(v)[ν∼m<Rm> + ∑
k = 1
k ≠ m

M

 ν∼mk<Rk>] = 

 = iVm n
0
mW(v) ,  (1) 

 m = 1, ..., M;    <Rm> ≡ ⌡⌠
$∞

∞

 Rm(v)dv; 

 W(v) = exp [$ (v/v$)2]/( πv$); 
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v$ = 2kBT/ma;   Vm = dmE/(2�);   Ωm = ω $ ω0m , 

where ω and E are the frequency and electric field 
strength of the light wave; Rm and dm are the 
polarization and matrix element of the dipole moment 
of the mth transition; Vm is the Rabi frequency; Ωm is 
the detuning of the radiation frequency from the 
frequency ω0m of the mth line center; k = 2π/λ is the 
wave number; v is the projection of the absorbing 
molecule velocity onto the wave vector; kB is the 
Boltzmann constant; T is the gas temperature; ma is the 
mass of absorbing molecules; n0

m is the equilibrium 
population difference of the lower and upper levels 
combining with the field for the mth transition. 
Parameter νm is the sum of the radiative relaxation 
constant and the output frequency of the collision 
integral for the mth transition (in most cases the 
radiative relaxation constants of levels for rotational$
vibrational molecular transitions are negligibly small). 
The constants ν∼m and ν∼mk are the elastic and inelastic 
input frequencies of the collision integral, respectively. 
The latter is also known as a cross-relaxation 
parameter. The ratio β = ν∼m/(kv$) determines the 
degree of collisional narrowing of lines, and along with 
the ratio α = ν∼m/γm, where γm is the uniform line 
halfwidth in the absence of interference, it is called the 
narrowing parameter. The cross-relaxation parameter ν∼

mk is the probability of polarization transfer from the 
kth transition to mth transition in unit time as a result 
of inelastic collisions which redistribute populations 
within two groups of levels corresponding to the upper 
and lower levels of the optical transitions of the given 
multiplet; they are assumed rather close to each other. 

The sought parameter proportional to the 
absorption coefficient is the field work, that is, the 
number of absorption events in unit time from the 
lower states of all the transitions interacting with 
radiation: 

 P = 2 Re i ∑
m = 1

M

 V*
m<Rm> .  (2) 

The frequencies of the collision integral νm, ν∼m, and  

ν∼mk are complex parameters whose imaginary part 
determines the shifting and asymmetry of the line 
profile. Within the framework of the isotropic 
perturbation model, they can be considered independent 
of the absorbing molecules’ speed. 

In the case of identical scattering of a molecule 
being in the upper and lower states of the mth optical 
transition, it follows from the equations for the 
frequencies of the collision integral in terms of the 
scattering amplitude11 and the optical theorem of 
scattering18 that these frequencies are real and satisfy 
the following equations11: 

 νm $ ν∼m $ ∑
k = 1
k ≠ m

M

 ν∼mk = ν∼inel > 0 ;  (3) 

 ν∼mk = ν∼km exp[(Ek $ Em)/(kBT)] ,  (4) 

where Ek and Em are the energies of lower states of the 
kth and mth transitions, respectively, and ν∼inel in the 
accepted model of non-degenerate states is the half-sum 
of speeds of the molecule inelastic transitions from the 
upper and lower states of the mth transition to all the 
states not entering into the multiplet under 
consideration, i.e., it is the result of significantly 
inelastic collisions. Actually, because of degeneration of 
the energy levels by projections of the total angular 
momentum (this degeneration is always present in  
the absence of continuous external fields), ν∼inel 
contains, along with the contribution from inelastic 
collisions, the contribution from elastic collisions, which 
change an orientation of the molecule. It follows from 

Eq. (3) that in the absence of line mixing (ν∼mk = 0) for 
the mth isolated transition ν∼inel is equal to the collisional 
halfwidth of the line γm = νm $ ν∼m. Below it is shown 

that even in the presence of mixing, under certain 

conditions, Eq. (3) gives the effective collisional 
halfwidth of the Lorentzian profile of an unresolved 
multiplet line at high pressure of the buffer gas. 

For transitions in the visible and IR spectral 
regions the equilibrium population difference n0

m is 
equal, to a good approximation, to the lower level 
population of the considered transition Nm not 
perturbed by the radiation field: 

 Nm = ngm(2Jm + 1) exp [$ �cEm/(kBT)]/Q ;  (5) 

 Q = ∑
k

 gk(2Jk + 1) exp [$ �cEk/(kBT)] , 

where n is the density of absorbing molecules; Em and 
Jm are the energy and the rotational quantum number 
of the lower level of the corresponding transition; gm is 

its nuclear statistical weight; � is the Planck constant; 

“ is the speed of light. 
The analytical solution of Eq. (1) can be obtained 

in the general case at arbitrary relations between the 
parameters νm, ν∼m, and ν∼mk by integration over speed 
and inversion of M × M matrices. However, at l > 2 
this solution is too cumbersome. Therefore, let us 
restrict our consideration to searching for an exact 
solution of Eq. (1) for doublet lines (l = 2) without 
any restrictions on its parameters. For l > 2 let us 
construct the model analytical solution for the 
particular case of the input and output frequencies 
being the same for different multiplet components, 
while the output and elastic and inelastic input 
frequencies remain different. 

 

3. Profile of a doublet line 
 
For l = 2, using Eqs. (1) and (2) and 

substituting 

 V2
in

0
1 → $ Si/2π,   ViVjn

0
j → $ Gij SiSj/2π, 

 ViVjn
0
i → $ Gji SiSj/2π,   Gij ≡ Nj/Ni ,  (6) 
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we derive the equation for the absorption coefficient of 
a doublet line 

 kd(ω) = 
1
π Re {S1w1 + S2w2 $ [S1ν∼2 + S2ν∼1 $  

 $ S1S2(G12ν∼12 + G21ν∼21)]w1w2 }/ 

 {1 $ ν∼1w1 $ ν∼2w2 + (ν∼1ν∼2 $ ν∼12ν∼21)w1w2} ;  (7) 

 wi ≡ 
 

π

kv$
 w 

⎝
⎜
⎛

⎠
⎟
⎞Ωi + iνi

kv$
 , 

where w(z) is the complex probability function; Si, 
i = 1, 2 are the intensities of the doublet components. 

As a rule, for the doublets under discussion  
the energy difference between the upper and lower 
energy levels is far less than the thermal energy:  
|E1 $ E2| << kBT. Besides, the relaxation constants for 
the two combining transitions can be considered equal 
to a high degree of certainty: 

 ν1 = ν2 ≡ ν ,   ν∼1 = ν∼2 ≡ ν∼ , 

 ν∼12 = ν∼21 ≡ ζ ;   S1,2 ≡ g1,2 S .  (8) 

As a result, Eq. (7) becomes somewhat simpler because 
the number of terms entering into it decreases: 

 kd(ω) = 
S

π Re 
g1w1 + g2w2 $ (g1 + g2) (ν∼ $ ζ) w1w2

1 $ ν∼(w1 + w2) + (ν∼2 $ ζ2) w1w2

 . 

(9) 
The line shape (9) at different values of the 

parameters of narrowing α = ν∼ /γ, γ ≡ ν $ ν∼ and cross-
relaxation ξ ≡ ζ/γ is shown in Fig. 1 as an example of 
the joint effect of collisional narrowing and mixing on 
the doublet line. Equation (9) was used for processing 
the experimental line profiles of resolved and 
unresolved doublets of the ν2 band of m2n  nearby 
5 μm. The experimental data were recorded with the 
Fourier transform spectrometer.19 In particular, the 
results of processing support the assumptions (8). 

In the limiting case of homogeneous broadening or 
for far wings of a line, where 

 Ω2
1,2 + ν2  << kv$ ,  (10) 

having used the asymptotic expansion20: 

 w 
⎝
⎜
⎛

⎠
⎟
⎞Ω1,2 + iν

kν$
 ≅ 

kv$

ν $ iΩ1,2
 / π ,  (11) 

we have from Eq. (9) 

 kd(Ω) = 

= 
S

π 
(γ + ζ)[γ2

 $ ζ2
 $ Ω(Ω + Δ)] + γ(2Ω + Δ) (Ω + Δ/4)

[γ2 $ ζ2 $ Ω(Ω + Δ)]2 + γ2(2Ω + Δ)2  = 

(12) 

= 

S(γ $ ζ)

π  

1 + Δ 
(γ $ 2ζ) Ω + γΔ/2

2(γ $ ζ) [Ω2 + (γ + ζ)2]

Ω2
 + (γ $ ζ)2

 + 2Δ 

Ω(Ω2
 + γ2 + ζ2) + Δ(γ2 + Ω2)/2

Ω2 + (γ + ζ)2

 ; 

(12a) 

 Δ ≡ |ω01 $ ω02| ,   Ω ≡ Ω1 ,   Ω2 = Ω $ Δ . 
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Fig. 1. Line shape kd(ω) described by Eq. (9) for γ/kv$ = 0.2; 
α = 2 (a, b) and 5 (c) and (ω02 $ ω01)/kv$ = 0.5 (a) and  
1.5 (b, c); ζ/γ = 0.1 (curves 1), 1 (2), 2 (3), 5 (4), and 10 (5). 
 

Equation (12) coincides with the well-known 
profile of a doublet line subject to the collisional 
exchange.7$10 From Eq. (12a) it is seen that for the 
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unresolved doublets (Δ → 0) kd(Ω) is the Lorentz 
profile with the halfwidth ν∼inel = γ $ ζ less than the 
collisional line halfwidth γ by the cross-relaxation 
parameter ζ. 

 

4. Profile of a multiplet 
 

Similarly to the case of the doublet line profile, 
under the assumption of equal relaxation constants for 
all transitions taking part in the absorption: 

 νm = ν ,   ν∼m = ν∼ ,   ν∼mk = ζ,  (13) 

for the profile of a multiplet consisting of l 
components we have 

 kmult(ω) = 
1
π Re ∑

m = 1

MLL

  
wm 

1 $ (ν∼ $ ζ)wm

 × 

× 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

Sm + ζ ∑
m = 1

M

  
Gmk SmSkwk

 

1 $ (ν∼ $ ζ)wk

 / 

⎣
⎢
⎡

⎦
⎥
⎤1 $ ζ ∑

m = 1

M

  
wk

 

1 $ (ν∼ $ ζ)wk

  . 

(14) 

Assuming Sm = gm S, Eq. (14) can be simplified: 

 kmult(ω) = 

= 
S

π Re 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
m = 1

M

  
gm wm

 

1 $ (ν∼ $ ζ)wm

/ 

⎣
⎢
⎡

⎦
⎥
⎤1 $ ζ ∑

m = 1

M

  
wk

 

1 $ (ν∼ $ ζ)wk

 . 

(15) 

In the limiting case of high pressures Eq. (15) 
takes the form 

 kmult(ω) = 

 = 
S

π Re 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
m = 1

M

  
gm

 

γ + ζ $ i Ωm
/ 

⎣
⎢
⎡

⎦
⎥
⎤1 $ ζ ∑

m = 1

M

  
1

γ + ζ $ i Ωk
 . 

(16) 

Equations (15) and (16) form the model bounded, 
first of all, by the condition (13) which can be verified 
from comparison with the experiment. Correspondingly, 

its terms ν, ν∼, and ζ are the effective parameters 
averaged over all multiplet components. 
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