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Based on the probability density function obtained earlier for concentration of a pollutant spread 
in the atmosphere, we consider the problem of determining mathematical expectations of the frequency of 
occurrence of concentration to be above  a given  threshold level and the duration of such emissions. 
Calculations by  the deduced formulas well agree with the experimental data from Refs. 1 and 2.  It is 
shown that the "transient" and "equilibrium" regimes of concentration pulsation obtained by the formulas 
correspond to different values of pollutant concentration intermittence. 

 

Some applied problems require the knowledge of 
such characteristics as mean value of the frequency  of 
occurrence of an atmospheric pollutant at the 
concentration level C that exceeds a given threshold 
value C0, the mean duration of such events, and the 
mean time between the events when the concentration 
exceeds a given level. The empirical estimates of these 
characteristics were obtained in Ref. 1 on the basis of 
pulsation measurements of a pollutant concentration, 
emitted from a stationary source, at a fixed point in 
space. It was demonstrated in Ref. 2 that one can 
observe two fluctuation regimes of the pollutant 
concentration in the ground layer of the atmosphere. 
These are  the "transition" and the "equilibrium" 
regimes. 

The transition regime is characterized by the fact 
that, together with the part of spectral density of 
concentration pulsation that obeys the law f ∼ "$5/3" 
(f is the pulsation frequency), one can observe the 
pulsation obeying the f ∼ "$2/3" law. The latter is 
valid at the dimensionless frequency greater than two, 
and the law of "five thirds" at the dimensionless 
frequency greater than seven. 

According to the above-stated in Ref. 1, in 
determining the parameters of the processes leading to 
the  enhancement of  a given concentration level by an 
admixture, the experimental data from Ref. 1 have 
divided into two groups. It is well known that 
determining these characteristics requires to know the 
distribution laws of concentration and its derivative 
with respect to time.3  By the moment of Refs. 1 and 2 
publication these characteristics were not known. So 
the results obtained in Ref. 1 are of empirical character 
and it is difficult to extrapolate them to the conditions 
of a pollutant spread different than those considered by 
the authors of these papers. However, at present the 
regularities of pollutant concentration distribution are 
studied quite well4 and one can return to this problem 
formulated in a more general form. 

Theoretical basis for determining the mean values 
of the pulsation time of random processes are developed 
in statistical radio engineering (see, for instance, Ref. 3). 

For stationary random processes, mathematical 
expectation for the number of intersections of a given 
level C0 by the concentration "from below" (with 
positive derivative), has the form 

  λ+(C0) = ⌡⌠
0

∞

 

 

C′f2(C0, C′)dC′,   (1) 

where f2 is the joint function of probability density of 
the pollutant concentration and its derivative with 
respect to time. In the stationary case, the values of the 
process and its derivative are statistically independent, 

so f2(C0, C′) = f0(C)f1(C′), where f0 is the probability 
density of the pollutant concentration C, and f1 is 

probability density of its derivative C′ with respect to 
time. Mathematical expectation of the number of events 
when the concentration reaches the level C0 "from 
above" (with negative derivative) is equal to the mean 
number of events  when it reaches this level "from 
below": λ$(C0) = λ+(C0).  The total number of events 
is λ(C0) = 2λ+(C0). Mathematical expectations for the 
duration ρ+(C0) and for intervals between the emissions 
ρ$(C0) can be obtained by the formulas 

 ρ+(C0) = 
1 $ F0(C0)

λ+(C0)
 ;   ρ$(C0) = 

F0(C0) 
λ+(C0)

 , (2) 

where F0 is the distribution function of the pollutant 
concentration. It corresponds to the probability density 
f0. 

According to Ref. 4, the probability density of a 
pollutant concentration f0 has the form 

 f0(C) = (1 $ γ)δ(C) + 
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where γ is concentration intermittence; 
$
C is mathematical 

expectation of the concentration; β is the second 
parameter of the probability density (it is connected 
with the variance of the pollutant concentration σ2 (see 
Ref. 4); δ(...) is the Dirac delta function; erf(...) is the 
error function. The function (3) is the exact analytical 
solution of the Fokker$Planck$Kolmogorov equation; 
it is verified by data of experiments in a wind tunnel, 
data of independent field experiments, and corresponds 
to the classical asymptotic from the theory of turbulent 
combustion.4  It was found in Ref. 4 that Eq. (3) well 
describes  the experimental data at  γ > 0.1.  At  
γ < 0.1, the effect of viscosity at the boundaries 
between the spatial domains with and without a 
pollutant cannot be neglected. For this reason, the term 
involving the delta function must, in the general case, 
be represented as a function of finite width. The 
empirical estimates of the effect have been attempted in 
Ref. 5. The theoretical estimates can be found in 
Ref. 6. 

The probability density of the derivative from the 
pollutant concentration f1 can be obtained, like f0, by 
solving analogous equation. However, here its form is 
verified on the basis of only general physical reasoning. 
The continuous part of the probability density of 
concentration is represented as a difference of two 
fundamental solutions to the heat equation. This fact 
demonstrates close connection existing between the 
considered problem and theory of normal Markovian 
diffusion processes. 

It is evident that the difference between two 
fundamental solutions is associated with the fact that 
the pollutant concentration is a non-negative value. The 
derivative of the concentration with respect to time can 
take any value, including the negative ones. In contrast 
to concentration, it does not intermit. So it is quite 
natural to assume that the form of the probability 
density of the derivative of concentration is normal. In 
the general case, this function is defined by two 

parameters, namely, the mathematical expectation and 
variance. For a stationary case, the mathematical 
expectation of the derivative is zero, and variance is 
equal to the second derivative of the correlation 
function of derivative pulsation under the condition of 
zero time shift.3  For the  dimensionality 
considerations, this value should equal to the ratio of 
the concentration variance to the squared characteristic 
time of concentration pulsation τ

e
, i.e., Eulerian time 

scale. Note that this reasoning is quite rigorous when 
applied to the correlation function  of concentration 
pulsation  in the exponential form. According to the 
above-said, the sought probability density function 
must take the form 

 f1(C′) = 
τ
e

2π σ
 exp 

⎣
⎢
⎡

⎦
⎥
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(τ

e C′)2

2σ2  . (4) 

The following density of spectral power of 
pulsation3 corresponds to the exponential form of the 

correlation function of concentration pulsation 

B(τ) = σ2 exp ($⏐τ⏐/τ
e
): 

 S(f) = 2τ
e
σ2/[1 + (τ

e
f)2]. 

In our paper "Correlation function of pulsation..." 
(see Atmos. Oceanic. Opt. No. 8, in press), the Figure 

presents the logarithm of f S(f)/τ
e 

σ2 as a function of 
the logarithm of the dimensionless frequency τ

e
f.  One 

can see that for τ
e
f of the order of 2 the spectral 

density obeys the law of "two thirds" and at frequencies 
τ
e
f > 7, the law of "five thirds". Thus, the form of the 

correlation function for the pulsating concentration of 
an atmospheric pollutant must be close to the 
exponential one what has been demonstrated by the 
results obtained in Ref. 2. 

Now we have all values and relations that are 
necessary for making calculations, and now we can 
start to discuss the results obtained. According to 
Eqs. (1), (3), and (4), the expression for determining 
λ+(C0) has the form 

 λ+(C0) = 
σ
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Usually, the frequency of the events when 
concentration exceeds a given level is calculated by the 
"modified" Rice formula.7  By the modification we mean 
substitution of the lognormal probability density of 
concentration into the formula obtained by Rice.  As a 
result we obtain, taking into account the exponential 
form of the correlation function of concentration 
pulsation, the following expression 

λ+(C0) = 

Iexp 
⎩
⎨
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⎭
⎬
⎫

$ 
ln2 [ ]C0 1 + I

2/ln(1 + I
2)C

m

2ln(1 + I2)

τ
e
2π 1 + I2 ln(1 + I2)

 , (6) 

where I = σ/
$
C is intensity of concentration pulsation 

of the atmospheric pollutant; C
m
 = 

$
C/ 1 + I2 is the 

median pollutant concentration. Figure 1 presents mean 
frequencies of occurrence of the events when 
concentration exceeds a given level depending on the 

threshold C0. The  frequencies are calculated by 

Eqs. (5), (6) and normalized to λ+(C0/
$
C = 1); the 

threshold is normalized to the mathematical expectation 

of concentration 
$
C.  The Figure 1 presents also the 

experimental data obtained in Ref. 1. The upper curves 
are constructed for I = 0.125 (γ = 0.14), and the 
experimental points correspond to the equilibrium 
regime discussed above; the lower curves are 
constructed for I = 1 (γ = 0.84), and the experimental 
points correspond to the transient regime. We see that 
the modified Rice formula (6) does not agree with the 
experimental data. This demonstrates  
 



632    Atmos. Oceanic Opt.  /July  1999/  Vol. 12,  No. 7 A.I. Borodulin et al. 
 

 

that the lognormal distribution  describes pulsation of 
atmospheric pollutant concentration rather roughly. At 
the same time, formula (5) quite well agrees with the 
experimental data. 

Thus, one can state that the transient regime 
corresponds to pollutant concentration intermittence 
close to 1; the equilibrium regime corresponds to the 
intermittence tending to zero. Calculations by the 
formula (5) and their comparison with the experimental 
data1 demonstrate that the transient regime is observed 
for γ > 0.5, and equilibrium regime for γ < 0.5. This 
well agrees with the assumption2 that the transient 
regime must be observed for short duration of  diffusion  
and equilibrium regime for the long one. 

 

 
 

Fig. 1. The dependence of λ+(C0)/λ+(C0 = 
$
C) on C0 = C/

$
C.  

Curve 1 corresponds to calculations by Eq. (5), curve 2 to 
calculations by Eq. (6). The circles and vertical bars present 
the data from Ref. 4. The upper curves are constructed for 
I = 0.125, the lower ones for I = 1. 
 

The formula for determining mathematical 
expectation of the emission duration ρ+(C0) has the 
form 

ρ+(C0) = 
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Figure 2 presents mathematical expectations of the 
emission duration as functions of the threshold values 
C0. These have been calculated by Eq. (7) and 

normalized to 1/λ+(C0/
$
C = 1).  The threshold is 

normalized to the mathematical expectation of 

concentration 
$
C. The points and vertical bars present 

the experimental data from Ref. 1 and their scatter.  
The upper curve is constructed for I = 0.125 (γ = 0.14) 
and corresponds to the equilibrium regime discussed 
above, while the lower curve for I = 1 (γ = 0.84) that 
corresponds to the transient regime. Thus, quite a 
satisfactory coincidence between the experimental 
results and calculated by Eq. (7) is obtained.  

 

 
 

Fig. 2. The dependence of ρ+(C0)λ+(C0 = 
$
C) on C0 = C/

$
C 

calculated by Eq. (7).  The circles and vertical bars present 
the data from Ref. 4. The upper curve corresponds to 
I = 0.125, the lower one to I = 1. 

 

Note that the function f1(C′), which was used 
above without any rigorous grounds,  describes the 
distribution of the concentration derivative with respect 
to time quite satisfactorily, because calculations by the 
formulas (5) and (7)  agree well with the experimental 
data. It is clear that λ+(C0) and ρ+(C0) can be obtained 
if and only if one has the values of mathematical 
expectation of a pollutant concentration, its variance, 
and the Eulerian time scale of pulsation process. The 
above-mentioned condition that γ > 0.1 (Ref. 4) is one 
of the restrictions upon the use of the obtained 
relations. 
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We also would like to note that the probability 
density (3) used in this paper was obtained in Ref. 4 
under the assumption that the process of pollutant 
spread is ergodic. In this case, we can change the 
procedure of averaging over an ensemble by averaging 
over time. Although the atmospheric processes are not 
stationary one can, however, if the period of pollutant 
concentration averaging is much longer than a 
characteristic scale of concentration pulsation and much 
less than the total time of pollutant spread, assume the 
ergodicity condition to be fulfilled sufficiently accurate 
for a practical use. In the theory of random processes, 
this procedure is called "sliding average".3 The 
characteristic time of concentration pulsation in the 
atmosphere (Eulerian temporal scale) is about 10 s, the 
characteristic time of atmospheric pollutant spread is 
several hours. So, in this problem, the interval of 
concentration averaging should be equal to 
approximately 10 min.4 In the case when the 
correlation function is close to the exponential form, 

the reasoning remains valid for the derivative of the 
concentration as well. 
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