
480   Atmos. Oceanic Opt.  /June  1999/  Vol. 12,  No. 6 A.V. Arguchintseva 
 

0235-6880/99/06  480-04  $02.00  © 1999 Institute of Atmospheric Optics 
 

 
 

Probabilistic approach to the simulation of problems  
of rational nature management 

 

A.V. Arguchintseva 
 

Irkutsk State University 
Received March 3, 1999 

 
Mathematical simulation of the distribution of anthropogenic air pollutants is based on the 

stochastic approach, which enables one to detect zones with dangerous concentrations of pollutants and 
to estimate duration of their effect on the environment. It is suggested to take into account climatic 
features of the examined regions with the help of the transition probability functions. 

 

To estimate the level of pollution of the surface 
atmospheric layer and of the underlying surface (soil, 
vegetation, water reservoirs, and currents of water) 
with anthropogenic admixtures emitted by elevated and 
surface extended sources, including waste dumps of ore-
mining enterprises and ash dumps of thermal power 
plants, we consider that the admixture is passive, i.e., 
that it is transported with the velocity of the medium 
and has no noticeable effect on the dynamic properties 
of this medium. In other words, in the linear 
approximation the effect of the admixture on the 
velocity field can be neglected considering that the 
turbulence of the medium is also independent of the 
admixture concentration. Mathematical models used for 
the description of the spreading of substances in media 
are based mainly on the semi-empirical equations of 
transport and turbulent diffusion of an admixture in 
homogeneous media 
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or anisotropic media 
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To describe the spreading of admixtures in the 
inhomogeneous media, the direct (second) Kolmogorov 
equation1 
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can be used or, transforming the last term on the right 
side of Eq. (3), we obtain 
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In Eqs. (1)$(4), i, j = 1, 3  are the serial 

numbers of the coordinate, t is time, ui is the velocity 
component of the medium along the coordinate xi, s is 
the admixture concentration, α specifies the degree of 
non-conservativity of the admixture, F = F(t, xi) is the 
function that describes the sources of the examined 

admixture, νij is the tensor of the turbulent diffusion 
coefficients. Equations (1)$(4) are written in the 
tensor form; therefore, the sum is taken over doubly 
repeated subscripts in monomials within the limits of 
their variations. 

Comparing Eqs. (2), (3), and (4), we see that 
Eq. (2) is a particular case of Eq. (3) or, which is the 
same, of Eq. (4), the last term of which comprises the 
information about the inhomogeneity of the medium. 

In the literature, various methods are suggested 
for closing Eqs. (1)$(3), from simpler ones (use of the 
observational data on the parameters of the medium) to 
more complicated (a solution of the systems of 
hydrothermodynamics equations for each nodal point of 
the calculation grid). In any case, solutions of 
Eqs. (1)$(3) give, as a rule, estimates of the absolute 
pollutant concentration for an individual realization of 
the behavior of the medium (for example, either 
typical, averaged, or unfavorable conditions for the 
spreading of admixtures or the parameters of the 
medium calculated for a given time from the equations 
of hydrothermodynamics). 

However, for many practical problems of interest 
are the zones of dangerous concentrations of the 
compounds from the viewpoint of not only their excess 
over the norms established for them (for example, over 
their maximum permissible concentrations), but also of 
their long-term effect on the natural medium. Just the 
long-term effect of pollutants creates real threat to the 
most vulnerable objects and contributes to the origin of 
cumulative effect, which can lead to delayed negative 
consequences and irreversible deviations from the 
natural equilibrium. Therefore, from my viewpoint, of 
definite interest are the mathematical models capable to 
detect the zones of hazardous effects on the natural 
medium with consideration for all climatic peculiarities 
of the examined region. 

The main prerequisites for the suggested models 
are that at different time periods definite types of air 
mass motion are encountered in the atmosphere of the 
given region, which can be considered stationary during 
some characteristic periods (for example, meteorological 
observations at fixed hours at stationary stations and 
posts). After each stationary period, a new observation 
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is carried out, i.e., the air mass motion is reorganized 
instantaneously, and a new stationary condition is 
realized, whose duration is determined by the time 
interval between two adjacent observations. Because 
the time of reorganization of atmospheric circulation is 
much smaller in comparison with the lifetime of the 
atmospheric motion of definite type, we can assume 
that it happens instantaneously. Thus, the system 
transforms from state to state as time passes. 

In addition, the long-term observations of the 
hydrometeorological parameters can be considered as an 
ensemble of climatic characteristics for the given 
region. Because their realizations were recorded in 
different years, they can be considered statistically 
independent. This approach allows one to overcome the 
difficulties, connected with the non-ergodic character of 
natural phenomena, by averaging over the realizations 
rather than over time. Thus, the observations at fixed 
hours at meteorological stations and posts can be 
considered as realizations of a random function, 
whereas the long-term observations - as a set or an 
ensemble of all realizations of this random function. 

By averaging over all realizations, we already 
obtain the climatic norm. 

In other words, variations (increments) acquired 
by new states of the system during non-intersecting 
time intervals T >> τ ( where τ is the Lagrangian scale 
of time) are practically uncorrelated.2  Therefore, the 
random sequence of states with independent increments 
can be considered as the Markovian process without 
aftereffects (the Markov chain), as if the system does 
not remember its previous states. As is known, the 
transition probability density for the Markov chain 
obeys the integral Smolukhovskii equation,3,4 whose 
solution for definite classes of random processes is 
reduced to the direct Kolmogorov differential equation: 
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For the examined region D in Eq. (5), 
p = p(t0, x0; t, x) is the probability density of system 
transition from the state x0 to the state x during the 
time period from t0 to t, which satisfies the conditions 
p ≥ 0 and 
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p(t0, x0; t, x)dx = 1,   (6) 

A is the average rate of systematic change of the 
parameter x, B is the intensity of oscillations about the 
average. 

It is natural that in Eq. (5) the admixture decay 
coefficient can be introduced together with its sources, 
and the system state can be considered as a function of 
many variables. 

Following Ref. 5, in Eq. (5) we convert to the 
phase coordinate s: 
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Here, the bar atop denotes averaging, and the prime 
denotes the deviation from the average. In this case, 
averaging is performed over the areas of the examined 
regions. The necessity of introduction of 1/2 in the 
coefficient B was easily proved in Refs. 3, 4, and 6. 

The technique for closing Eq. (7), suggested in 
Ref. 5, is based on the method of recursive enclosures,1 
where the equation for the average admixture 
concentration was derived as a particular case for 
different meteorological conditions. The equations for A 
and B are solved numerically with the use of the 
method of fictitious regions in the Cartesian coordinate 
system. In so doing, the boundary condition of the 
third kind is specified on the lower boundary of the 
region, which allows one to take into account the 
reflection and absorption of the admixture by the 
underlying surface; the conditions of the first or second 
kind are specified on the upper and side boundaries of 
the calculation region as functions of the direction of 
the wind velocity vector with respect to this calculation 
region. The initial conditions, in accordance with the 

available information, can be $s = s0 or 
$s = sbg, where 

s0 and sbg are the given concentration or its background 
value, respectively. 

The derivatives with respect to the spatial variables 
are approximated by the interpolation method, and the 

derivatives with respect to time are approximated by 
the method of two-cyclic complete separation. For 
numerical realization of the finite difference analogs, 
the nonmonotonic pass technique is used. 

Equation (7) is also solved numerically given that 
the condition of the probability measure is fulfilled. 
Numerical solutions of Eq. (7) were verified using the 
well-known analytical solutions obtained with some 
simplifications of physical processes. In particular, the 
analytical solution 
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C
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suggested for the stationary equation in Ref. 3, was in 
good agreement. Here, the constant C was determined 
from normalization condition (6). 

The direct simulation of Eq. (7) with the closures 
suggested in Ref. 5 is rather cumbersome. In some 
particular cases, for example, when we proceed to the 
Gaussian random fields of long-term meteorological 
observations, their complete statistical description is 
reduced only to calculations of the first initial and 
second central moments. However, following Ref. 2, for 
any random field with finite moments of the first two 
orders, it is always possible to find the Gaussian field 
with the same moments. In this case, to detect the 
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zones with dangerous pollution, one can consider not 
all ensemble of the random fields of meteorological 
observations, but only those, which contribute to the 
occurrence of the enhanced concentrations with the 
probability of occurrence of the conditions favorable to 
them. In so doing, the solution must be obtained in the 
moving coordinate system rotating with the wind. Such 
particular approaches were realized in Refs. 7$9. 

It should be noted that the theoretical laws of 
distribution simplify a solution of the formulated 
problem only partly, providing the most optimal 
detection of the zones with dangerous pollution. 
However, their knowledge is not obligatory, because 
the method itself allows one to establish the laws of 
distributions with the minimum discrepancy with 
respect to their approximation from the empirical data. 

The method can be generalized for heavy 
admixtures possessing their own sedimentation velocity. 
In this case, one can estimate not only the dust content 
in the atmosphere from sources of different type (high-
altitude smoke stacks, dumps, and so on) and draw 
contour lines for the regions with hazardous enhanced 
concentrations, but also calculate the amount of the 
admixture accumulated over a definite time interval on 
the underlying surface taking into account the 
probability of realization of all meteorological 
conditions during this time interval. Thus, the zones of 

enhanced pollution by various compounds are evaluated 
as integral functions of the climatic peculiarities of the 
given region. 

As an example of calculation, the regions of 
enhanced pollution of Irkutsk by nitrogen oxides in 
December are shown in Fig. 1.  The origin of 
coordinates is at the center of the city, where the 
stationary station of atmospheric pollution monitoring 
is located. For convenience, the probability of the 
excess over the established norms is normalized to the 
number of hours comprised in one month (a probability 
of 0.1 corresponds to 72 h). 

The most dangerous situation is observed in the 
northwest part of the city, where the population more 
than half a month breathes the air, in which the 
concentrations of this compound exceed even the 
maximum permissible norms. In the calculations of the 
cases of the excess over the maximum permissible 
average daily concentrations (which are more rigorous 
in comparison with their maximum instantaneous 
values), probability of excess reaches almost unity, and 
the regions of dangerous pollution significantly extend. 

Consideration of climatic peculiarities of the 
region for the mathematical models allows one to detect 
more stable zones of enhanced level of pollution, which 
must attract particular attention of the experts in 
different fields to make optimal decisions. 

 

 

 

Fig. 1. Probability of excess of the MPC = 0.085 mg/m3 of nitrogen oxide in December (Irkutsk): sources of admixture (✶); 
 local maxima (◊). 
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