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A new version of a set of mathematical models for investigating transport and transformation of 

pollutants from natural and anthropogenic sources in the atmosphere is presented.  The structure of the 
models, methods of discretization, and algorithms realizing the various models are constructed for 
application to direct and inverse modeling in problems of monitoring, forecasting, and ecological 
planning.  Toward this end, a variational principle in combination with decomposition and splitting 
techniques is used to construct the numerical models.  Algorithms for calculating the direct and adjoint 
trajectories in the source$detector system are described.  Examples are given of solutions of the direct 
and inverse problems for estimating the scales of interactions of the type (source) $(conservation zone) 
(Lake Baikal). 

 

Processes of transport and transformation of 
pollutants from natural and anthropogenic sources have 
become an important factor in the climatic system of 
large cities and industrial regions.  Their description 
and forecasting require mathematical models adequately 
reflecting hydrometeorological and ecological situations 
in real time and over extended periods.  

At present, efforts in the direction of air-quality 
control in Russia and elsewhere make wide use of 
models, which can nominally be called models for 
œsimultaneousB control of air quality.  These are 
various modifications of models of Gaussian type and 
are based on solutions of steady-state equations of 
pollutant transport in simplified formulations.  In 
Russia, models of such type are certified at a high 
administrative level and are recommended as the 
official methodology for use in the development of 
conservation measures and to realize government 
control of air quality.1  The principal advantage of 
models of the given class over complex numerical 
models consists in their simplicity and economy of 
realization in a probabilistic description of the process 
of the spreading of a pollutant under uniform steady-
state conditions.  Nowadays they have been adapted for 
autonomous use on a personal computer and in the 
context of local geo-information systems (GIS) are in 
active use throughout Russia and the CIS.  

It should be borne in mind that in all cities of the 
CIS, the air-quality conservation measures in use 
implement this official methodology.  Therefore, every 
active industrial entity and every new project that may 
have an effect on the environment acquire a right to 
exist only after it has been determined that they meet 
the requirements of maximum permissible emissions 
(MPE) of pollutants on the basis of this official 
 

methodology.  An analysis of the air-quality of cities of 
the CIS during the last 20 years shows that the 
majority of them find themselves in a state which, 
according to many indices, is far from ecologically 
favorable.  Hence we may conclude that the official 
methodology in use today is not fully suited for dealing 
with the problems of forecasting air-quality under 
actual conditions.  It is necessary to develop new 
approaches to the solution of ecological problems and 
for estimating the efficiency of conservation measures.  
In the near future such efforts will become 
extraordinarily urgent for the following reasons:  

$ in Russia a global orientation is currently 
underway toward the development of raw-material 
related industries; a tendency is also noted toward the 
creation of high-output power plants with the goal of 
the production of energy for export;  

$ on the other hand, the worldwide community 
has come to various decisions regarding the 
introduction of international quotas on the volume of 
emissions.  This requires the imposition of controls on 
transboundary transport of pollutants;  

$ according to predictions of the Russian Ministry 
of Emergency, in the near future this country can 
expect an increase in the number of technogenic 
catastrophes, and these predictions are in accord with 
the conclusions of the European Economic Commission 
of the UN (Ref. 2);  

$ the risk of large-scale military operations of the 
type œDesert StormB has increased, the consequences of 
the occurrence of which as a result of atmospheric 
transport would have a global character.   

With such perspectives, ecology rises to the level 
of a strategic and essential socio-economic factor in the 
context of public policy.  
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1. Model of transport and 
transformation of pollutants  

 

For convenience in the construction of the 
numerical schemes and algorithms realizing them for 
direct and conjugate problems, we will use a double 
description of the models: (1) in the form of a system 
of differential equations of transport and transformation 
of multicomponent pollutants and (2) in the form of a 
variational formulation employing the integral identity.  

The basic system of equations of the model is 
written as  

 (Λϕ)i ≡ 
∂πϕi

∂t  + L(πϕi) + B(ϕ)i = fi,   (1) 

 i = 1,n , n ≥ 1. 

Here ϕ = {ϕi(x, t), i = 1,n } ∈ Q(D
.

t) is the state-

function vector; ϕi is the concentration of the ith 
pollutant; n is number of different substances, 

f = {fi(x, t), i = 1,n } are the source functions, L(x, t) 

is the advection$diffusion operator, B(ϕ) is the 
pollutant transformation operator; π is a function of the 
pressure, whose form depends on the choice of the 

coordinate system; Dt = D×[0, t
$
]; D is the domain of 

variation of the spatial coordinates x, and [0, t
$
] is the 

time interval; Q(Dt) is the space of state functions 
satisfying the boundary conditions on the boundary of 
the domain Dt.  If the presence of errors is assumed in 
the model, then expressions describing them are 
formally included in the source functions as additional 
terms.  

A constructive description of the pollutant 
transformation operators is achieved with the help of an 
automated system for constructing kinetic models of 
atmospheric chemistry.3,4   

The variational formulation of the model has the 
form 

 I(ϕ, ϕ*, Y) ≡ ⌡⌠
Dt

 (Λϕ $ f)ϕ*dDdt = 0,   (2) 

where ϕ* ∈ Q*(Dt) is a function with sufficiently 
smooth components; Q*(Dt) is the function space 

conjugate to Q(Dt); Y = {Yi, i = 1,n } ∈ R(Dt) is the 

parameter vector of the model; R(Dt) is the domain of 
accessible values.  

For problems of monitoring, forecasting, planning 
and control, and to organize the inverse modeling 
algorithms, we introduce the set of functionals  

 Φk(ϕ) = ⌡⌠ Fk(ϕ)χk(x, t)dDdt, k = 1,K , K ≥ 1, (3) 

where Fk(ϕ) are prescribed functions on the set of state 
functions, differentiable with respect to ϕ; χk ≥ 0  are 
the weight functions, and χkdDdt is a Radon or Dirac 
measure in Dt. 

Three variants of the domain D are considered: a 
sphere, a hemisphere, and a bounded region on the 
sphere.  The structure of the domains, choice of 
coordinate system, basic notation and its meaning, 
statement of the boundary conditions and initial 
conditions, a description of the state functions and 
parameters, the structure of the functionals as a 
function of the purpose of the study, and the method of 
constructing the integral identity are all described in 
Refs. 5$8.  

The numerical schemes and the algorithms 
realizing the models are constructed using the 
variational principle in combination with splitting and 
decomposition methods.  The integral identity (2) is 
used to achieve this end.  In the splitting method the 
main discretization element of the model is constructed 
on the basis of relations of the form9   

 ⌡⌠
xα$1

xα

 
 (Λxϕ $ f)ϕ*dx = 

 = ⌡⌠
xα$1

xα

 Λ*xϕ*ϕdx $ (Axϕ, ϕ*)⏐
xα

xα$1
 $ ⌡⌠

xα$1

xα

 fϕ*dx,  (4) 

where ϕ is one of the components of ϕ, x is one of the 
spatial coordinates, Λx is that part of the operator Λ, in 
the context of the splitting method, operating in the x 

direction; [x
α$1, xα

] is the αth grid cell in x; α = 1,M ; 

Λ*
x is the operator conjugate to Λx; (Axϕ, ϕ*) are 

relations at the boundaries of the cells in x, and the 
form of the operator Ax  is determined by the structure 
of the operator Λx.  

How the model is discretized depends on how the 
functions ϕ* are assigned in Eq. (4).  For example, for 
ϕ* = const for advection$diffusion problems we obtain 
schemes of the integral-interpolation balance method.  
We choose the functions ϕ* such that they are solutions 
of the local conjugate problems  

 Λ*xϕ* = 0, x
α$1 ≤ x ≤ x

α
,  α = 1,M .   (5) 

These solutions, given the corresponding assumptions 
regarding approximation of the coefficients of the 
operator Λx  within the limits of the grid cells,  are 
found analytically and then substituted into Eq. (4).  
Examples of the use of this discretization method are 
described in detail in Ref. 9.  Finally, its application 
leads to numerical schemes of variational-difference 
type.  

To approximate the integral identity (2) in time, 
we use the method of weak approximation with 
fractional time steps.5  In this method, the pollutant  
 



464   Atmos. Oceanic Opt.  /June  1999/  Vol. 12,  No. 6 V.V. Penenko and E.A. Tsvetova 
 

 

transformation operators are taken into account at each 
fractional step.  As a result of the discretization, we 
obtain the discrete analog of the integral identity  

 I
h(ϕ, ϕ*, Y) = 0,   (6) 

 ϕ ∈ Qh(Dh
t),   ϕ* ∈ Q*h(Dh

t),   Y ∈ Rh(Dh
t). 

Here the superscript h denotes the discrete analog of 

the corresponding objects.  In the grid domain Dh
t we 

also construct the discrete analogs of the functionals Φh
k

(ϕ) [Eq. (3)].  Here it is essential that the 
discretization of the integrals and state functions in 
identity (6) and in the functionals (3) be performed on 
the same grid so as not to introduce additional 
transformation operations from one grid to the other.  
In the decomposition of the domain D into subdomains, 
this alignment should be maintained even though the 
grids in the subdomains can be introduced differently.  

The numerical schemes and algorithms are 
obtained from the conditions: 

for the direct problem 

 
∂Ih(ϕ, ϕ*,Y)

∂ϕ*
 = 0, for all ϕ* ∈ Q*h(Dh

t),   (7) 

for the conjugate problems 

  
∂Ih(ϕ, ϕ*

k, Y)

∂ϕ  + 
∂Φh

k

∂ϕ  = 0, for all ϕ ∈ Qh(Dh
t),   (8) 

 ϕ*
k(x, 

$
t) = 0; k = 1,K . 

The sensitivity relations for the functionals  

 Φh
k (ϕ) ≡ (gradYΦh

k(ϕ), δY) = 

 = 
∂
∂ξI

h(ϕ, ϕ*k, Y + ξδY)⏐ξ = 0,  (9) 

 k = 1,K , 

where the symbol δ denotes variation of the 
corresponding quantities, ξ is a real parameter, 

δY = {δYi, i = 1,n } is the vector of variations of the 

parameters Y, gradYΦh
k(ϕ) ≡ Γk are the sensitivity 

functions of the functional with index k to variations of 
the parameter vector.  Their explicit form is obtained 
by equating the coefficients on the left and right-hand 
sides of Eq. (9) for the corresponding components of 
the vector of variations of the parameters or directly by 
differentiating the expression in discrete form for the 
functional  

 Γki = 
∂

∂Yi
 Ih(ϕ, ϕ*k, Y), k = 1,K , i = 1,N   (10) 

for all Y ∈ Rh(Dh
t) for prescribed ϕ and ϕ*

k.    
Since we used the method of weak approximation 

with fractional steps and decomposition of the domain 

D into subdomains in the approximation of the integral 
identity (2), the systems of basic equations (7) and 
conjugation equations (8) are splitting schemes 
decomposed into subdomains.  The method of their 
construction with the help of Eq. (6) ensures mutual 
alignment of these schemes. Their specifics are such 
that the transport processes are approximated for each 

species individually, but over the entire domain D
h
t.  

The pollutant transformation processes are described by 
a set of chemical-kinetic œpointB models for the entire 
set of species at each point of the grid independent of 
the other points.4   

It should be noted that the conjugate functions in 
the method are employed in two different senses.  First, 
in the local sense, as solutions of the sets of local 
conjugate problems (5), which are chosen as weight 
functions in the construction of the discrete analogs of 
the operators in identity (6).  And, second, in the 
global sense, as solutions of the global conjugate 
problems (8) linking the functions with the model (1).  
They are also used to obtain the sensitivity relations 
(9) and the sensitivity functions (10).  

We may make one more remark regarding the 
organization of the modeling process.  In optimization 
problems of ecological planning, when it is necessary to 
calculate many different scenarios it is troublesome to 
work with time-dependent transport models: the large 
number of internal degrees of freedom requires a 
correspondingly large amount of calculation to reach 
steady state.  Therefore, in those cases when the 
temporal variability of the processes has large 
characteristic scales it makes sense to consider scenarios 
that have already reached steady state, i.e., to solve 
steady-state problems.  This can substantially reduce 
the amount of work and give a good first 
approximation for further study.  

Under these assumptions, the time derivatives in 
model (1), Eq. (2) can be dropped.  The discretization 
procedure based on the integral identity (2) and the 
structure of the algorithms remain the same, only in 
this case, the spatial variable that enters as the 
œmarchingB variable#the variable in which splitting of 
the problem and the dynamics of the modeled processes 
are realized#is the spatial variable in which the 
predominant motion of the flux of air masses occurs.  

In the construction of the numerical schemes for 
the transport model the hydrothermodynamic 
components of the state function of the atmosphere are 
assumed to be known.  They can be assigned in various 
ways.  In particular, they can be calculated from 
models of the dynamics of the atmosphere functioning 
in combination with the transport models.  

 

2. Algorithms for calculating particle 
trajectories 

 
The modeling methods considered above are based 

on an Eulerian description of advection$diffusion 
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processes of material transport.  In practice, one 
frequently encounters the need to calculate the 
spreading of pollutants in moving volumes of air 
masses, i.e., using the Lagrangian approach.  These 
approaches are not alternative approaches, rather they 
complement each other.  Each of them has its own 
advantages and shortcomings, and its own region of 
applicability.10   

Here we will describe the basic elements of the 
algorithm of œnon-gridB modeling of the trajectories of 
the pollutant particles under the assumption that the 
hydrometeorological parameter fields of the atmosphere 

are given on some grid Dh
t in Dt.  In accordance with 

the definition of direct and inverse modeling, we 
construct the algorithms for calculating the direct and 
conjugate (inverse) trajectories.  

We construct the structure of the numerical 
schemes using the method of splitting over physical 

processes.  In the domain D
h
t over sufficiently short 

intervals of time of length Δt we define two splitting 
steps:  

1) transport over trajectories of air masses  

 
dϕ

dt
 = 0;   (11) 

2) turbulent exchange  

  
∂ϕ
∂t  $ divμgradϕ = 0, (12) 

where μ = (μ1, μ2, μ3), μi(i = 1,3 ) are the coefficients 

of turbulent exchange in the xi directions (i = 1,3 ).  

The direct trajectories are modeled in the direction of 
increasing time, and the inverse trajectories, in the 
direction of decreasing time.  

In contrast to the Eulerian approach, splitting in 
the Lagrangian approach is realized along the particle 
trajectories.  In the first step (11) the solution consists 
of integrating the system of equations 

 
dxi

dt
 = ui(x, t),  i = 1,3 ,  

 x = (x1, x2, x3) ∈ D,  tj ≤ t ≤ tj+1,   (13) 

where ui(x, t) are the velocities of transport in the xi 
direction, and u3  takes into account the velocity of 
gravitational settling of the particles.  

To construct the second step (12), we use the 
local approximation of the operator of the type œfrozenB 
coefficients.11  In this approach, for each trajectory one 
constructs a family of local approximations of problem 
(12) with constant coefficients in the domain Dt, 
which, however, are parametrically dependent on the 
coordinates of the current point of the trajectory.  In 
other words, the constant coefficients of the local 
problem are equal to the values of the coefficients of 
problem (12) at the indicated point of the trajectory.  

Under such assumptions, each local problem 
admits separation of variables and, consequently, the 
Green’s function for it can be represented as a product 
of the Green’s functions for the one-dimensional 
equations in the separate coordinates.  The Green’s 
function for one-dimensional equations of the type (12) 
is identical to the probability density of Gaussian 
random variables with zero mean and standard 

deviation σi = 2Δtμi (i = 1,3 ).    

Omitting intermediate steps, we write out the 
final schemes of the algorithms:  

for the direct trajectories  

 
Δx

j
α

Δt
 = uj

α
(x, t) + 0.5∑

k=1

3

 
∂uj

α

∂xk
Δx

j
k,   (14) 

 Δx
j
α
 = xj+1/2

α
 $ xj

α
,  α = 1,3 , 

 x
j+1
α

 = xj+1/2
α

 + ηj+1/2
α

,  j = 1,J$1 ;   (15) 

for the inverse trajectories  

 x*j+1/2
α

 = x*j+1
α

 + η*j+1
α

,  j = J$1,1  , (16) 

 
Δx*j

α

Δt
 = uj+1

α
(x, t) + 0.5∑

k=1

3

 
∂uj+1

α

∂xk
Δx*j

k ,  (17) 

 Δx*j
α

 = x*j
α

 $ x*j+1/2
α

, α = 1,3 . 

Here ηj+1/2
α

 and η*j+1
α

 are the normally distributed 
random variables with zero mean and standard 

deviations σj+1/2
α

 and σj+1
α

 in the method of local 
approximations for problem (12); the index  
j counts the time steps, J is the total number of time 

steps on the interval [0, 
$
t].  The numerical scheme 

(14) and (17) approximate Eqs. (13) to second order in 
time.  

Systems (14) and (17) are solved for the 
increments of the coordinates by elimination.  The 
direct trajectories are calculated starting from the 
region, in which the pollutant particles are distributed 
at the time t = 0 or from the coordinates of the 
pollution sources.  

The conjugate trajectories are modeled by 
trajectories emanating from the œconservationB zone or 
from the coordinates of the observation point at the 

time t = 
$
t  in the direction of the initial time 

(backwards in time).  As in the case of the solution of 
conjugate problems, the conjugate trajectories have 
only informational significance.  They can be defined as 
the Lagrangian analog of conjugate problems in models 
of Eulerian transport.  They give information about the 
prehistory of the pollutants entering into the 
conservation zone or into the region of an observation 
point.  
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The introduction of random characteristics into 
the calculational algorithm at the step at which 
turbulence is taken into account envisages use of the 
technique of statistical modeling over an ensemble of 
particles.  If turbulent exchange is neglected, it is 
possible to work with individual particles to calculate 
their direct and conjugate trajectories.  

 

3. Modeling scenarios  
of source$detector type 

 

The set of models and basic algorithms is an open, 
developed system of modeling. This development is 
continuously stimulated by new formulations of 
problems of ecological monitoring, forecasting, and 
planning.  Here we present an example of the solution 
of two typical problems, choosing as our pollution 
œsourceB the Chernobyl Nuclear Power Plant, and as 
our detector-zone (conservation zone or region of 
observation points)#Lake B aikal.  The problems were 
solved for the Northern Hemisphere, and the structure 
of the regions, the hybrid coordinate system, and the 
grid regions are described in Ref. 8.  The main goal of 
the numerical experiments was to estimate the scales of 
interactions of the type œsource$detector.B  

In order to ensure the reliability of the estimates, 
we used retrospective factual information about the 
atmospheric circulation in our calculations, obtained 
from the Reanalysis NCEP/NCAR database (USA) 
(Ref. 12) for April$May 1986.  Emission of pollutants 
from the source was taken into account in a scenario in 
the time interval since April 26 till May 5, 1986, which 
corresponds to the period of intense emission of 
radionuclides. The observations functional was defined 
over the time interval since May 3 till May 13, 1986.  

To organize the modeling scenarios according to 
the Reanalysis data, we regenerated the detailed 
spatiotemporal structure of the state functions of the 
atmosphere in the regimes of direct and inverse 
modeling in the chosen time interval.  Toward these 
ends, we used an information model based on methods 
of learning and interpolation of data guided by the 
basic model.13   

The first problem was solved by direct modeling.  
Its solution demonstrates the character of the processes 
of pollutant spreading from sources.  For the second 
problem, we used the method of inverse modeling.  Its 
solution provides information about the danger that the 
detector-zone will receive pollution from every source 
located in the spatiotemporal region of influence and 
about the scales of this region.  It also shows by what 
paths this danger moves toward the detector.  

Figures 1 and 2 show fragments of the direct 
modeling scenario.  Figure 1 shows the distribution of 
the concentration of pollutants over the surface of the 
Earth on May 13, 1986. Figure 2 shows the total 
concentration of pollutants during the period since 
April 26 till May 13, 1986.  The concentrations are 
given in relative units to obviate the need for a 

discussion here of questions of interpretation of the 
results of the calculations at the informational level in 
terms of actual concentrations.  We consider this 
calculation as a œtracerB scenario.  

 

 
 

Fig. 1.  Pollutant concentration k on the Earth’s surface on 
May 13, 1986. OE denotes the Greenwich meridian. 

 

Total pollution doze 

 
 

Fig. 2. Total pollutant concentration on the Earth’s surface 
during the period since April 26 till May 13, 1986. 

 

Figures 3 and 4 show fragments of the solution of 
the conjugate problem for the observation functional.  
According to its definition (3), this functional contains 
Fk (ϕ) ≡ ϕ, and the weight function χk  is nonzero at 
the grid points that overlie Lake B aikal during the time 
interval since May 3 till 13, 1986.  Under such 
conditions, the functional is an estimate of the total 
pollution received by the indicated region during the 
indicated time interval.  The solution of the conjugate 
problem in this sense is the sensitivity function of the 
functional to variations of the pollution sources or the 
influence function of the sources for the magnitude of 
the estimated functional.  Figure 3 presents the 
instantaneous value at the time 01:00, Tomsk local time 
on April 26, 1986 of the influence function of the 
sources located on the Earth’s surface in the Northern 
Hemisphere for the magnitude of the observations 
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functional.  Figure 4 shows the total hazard function 
for pollution of Lake B aikal by sources in the Northern 
Hemisphere during the time period since April 26 till 
May 5, 1986, i.e., the period of intense emission from 
Chernobyl.  

 

Influence function, k = 10 (April 26, 1986) 
œMeasurementsB since May 3 till May 13, 1986/Lake Baikal 

(52.5°N, 112.5°E) 
 

 
 

Fig. 3.  Influence function at 01:00, LT on April 26, 1986 on 
the Earth’s surface for the measurement functional during the 
period since May 3 till May 13, 1986. 

 

Influence function, k = 10 (April 26, 1986$ May 5, 1986) 
œMeasurementsB since May 3 till May 13, 1986/Lake Baikal 

(52.5°N, 112.5°E) 

 
Fig. 4. œHazardB function for Lake Baikal during the period 
since April 26 till May 13, 1986 on the Earth’s surface.  The 
measurement functional during the period since May 3 till 
May 13, 1986. 
 

Note the hazard function is a two-parameter 
function.  One of these parameters is the time interval, 
during which the sources act, and the second is the 
time interval, during which measurements are taken or 
for which the functional is estimated.  It characterizes 
the contribution of every source during the period it is 
active in the model on the value of the functional 
during the observation period.  The influence function  
 

and the hazard function allow one to identify the most 
dangerous sources, and therefore they are the most 
important elements in the solution of the inverse 
problems of estimating the strength of the pollution 
sources acting on the detector-zone.  

An analysis of our modeling results demonstrates 
the global character of the processes of pollutant 
transport and the global character of the hazard 
function for pollution of a specific region.  Therefore, 
without estimates of the hazard functions and the scales 
of the regions of influence of the pollution sources it 
would be impossible to correctly pose the problem of 
investigating processes of a meso-regional scale. In 
particular, in the scenario under consideration the 
pollution hazard function shows that pollution can 
enter the region of Lake B aikal not only from the 
territories of the CIS, but also from the territories of 
China and Mongolia.  The reason for this is that 
starting from early May the influence of westerly-
easterly transport of air masses predominates at the 
same time that the influence of the Sayan-Altai 
cyclogenesis begins to strengthen, which becomes 
predominant during the summer months.  

 

4. Conclusion  
 

The methodology of studying processes of 
transport and transformation of pollutants, based on 
principles of direct and inverse modeling using a 
variational approach and optimization, allows one to 
fully utilize the multifunctional possibilities of 
numerical modeling.  In the first place, this pertains to 
the organization of the closed cycle of information 
processing in the system model$observations by means 
of the appropriate choice of criteria and functionals.  In 
this case, a matched description of processes of different 
scales is ensured on the level of discrete approximations 
and the algorithms realizing the models.  
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