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Methodological and algorithmic aspects of combining mathematical models with the results of 
observations and experiments in studying real processes are discussed. The theoretical grounds for such 
constructions are the variation principles and the methods of optimization as applied to joint models of 
atmospheric hydrothermodynamics and the models of transfer and transformation of pollutants.  Relations 
of the theory of model sensitivity and algorithms for their implementation are constructed for these 
combinations. The algorithms allow simultaneous estimation of relative contributions from each factor to 
variations of the characteristics under study, as well as evaluation of the tendencies of their influence. 

 

Introduction 
 

Specialists in different research areas study various 
aspects of mathematical support of the studies of 
pollutant transfer and transformation under conditions 
of Siberian atmosphere.1 These studies are aimed, in 
particular, at gaining new knowledge about the 
processes under study by using jointly the mathematical 
models and data of laboratory and in situ experiments.  
Thus gained knowledge is targeted at the development 
of new approaches to solving problems in analysis and 
prediction. 

The study of pollutant transfer and transformation 
in the atmosphere is of principal importance for 
solution of related problems of the environmental 
protection, ecology, and assessment of climatic changes. 
Among numerous disturbing factors in the Earth’s 
system (agriculture, industrial and other human 
activities), changes in the chemical composition of the 
atmosphere are most thoroughly studied. Estimates 
show that the relative content and the global balance of 
chemically and optically active gases depend not only 
on numerous chemical, photochemical, and transfer 
processes, but also on the atmosphere$surface (waters, 
ocean, vegetation) exchange processes and especially on 
the emission and sedimentation of pollutants. 

The mechanisms of secondary pollution of the 
environment with products of transformation of the 
primary pollutants are also of great importance because 
the products of transformation may be more active and 
toxic than their precursors; so they may be more 
hazardous to human health and the environment. A 
direct influence is primarily observed on local scales 
and mesoscales of cities and industrialized regions, 
where the emissions occur. This affects climatic 
processes indirectly through the interaction of gaseous 
pollutants and aerosols under the radiative processes in 
the atmosphere. 

The climatic significance of aerosols in the 
atmosphere has been recently evaluated more 
specifically: 

$ the atmospheric aerosol has the tendency to 
produce negative radiative forcing (that is, favors 
cooling); 

$ the aerosol forcing may be significantly strong 
on the local scale, so that sometimes it is stronger than 
the positive effect (heating) due to the green house 
effect. 

The latter conclusion can be considered as a 
warning of a real possibility of ecologically adverse and 
even catastrophic situations in the highly industrialized 
regions because the effects of cooling lead to 
accumulation of pollutants in the near-ground 
atmospheric layer. This increases the significance of 
studies of transfer and transformation of pollutants 
together with a study of conditions for formation of 
mesoclimates taking into account the competition of the 
urban island of heat and the green house effect with the 
œaerosolB cooling. Besides, this stimulates conducting 
specialized in situ experiments in order to detect these 
phenomena. The practical importance of these studies is 
in revealing prerequisites of ecological disasters and 
preventing them. 

 

Structure of the data and models  
of observations 

 

The function of state falls in the category of 
fundamental characteristics of an object or process under 
study and the corresponding mathematical models. 
However, evaluation of the actually observed behavior of 
a system with using only the functions of state often 
proves inefficient. For successful studies the direct and 
inverse relations between the results of observations and 
the mathematical model of a process or its input 
parameters should be known and realizable in practice. 
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The results of observations can be described with the 
function of distribution of devices in a given space$time 
region and a set of values  of the parameters measured.  
Measurements can be classified as contact, remote, and 
indirect by their content and methods used. 

Prior to the discussion of general problems on the  
relations between observations and models of the 
processes, we should first answer the fundamental and, at 
the same time, specific practical question: What is the 
mathematical expression for the results of observations in 
terms of the function of state, which participates in the 
mathematical model for description of the processes or 
objects under study? In other words, we should find the 
mathematical models for observations themselves. In the 
general case, it is a set of models because every type of 
observations and measuring or observing device has its 
own algorithmic presentation in terms of informative and 
numerical description of the components of the function 
of state. For example, in contact observations the values 
of the function of state are measured directly. If there is 
no measurement error, then the operator of a model of 
observations is simply an identical operator in such cases. 
In remote measurements, the model of observations is 
usually based on integral operators acting in space and 
time on the set of values of the function of state. 

Let Dt denote the area, where the observed 
processes take place and the mathematical model 
describing these processes is defined. Assume that 
observations are realized on some set of points  

Dm
t  ⊂ Dt, which contains at least one point. Since the 

numerical model on the discrete area Dh
t ⊂ Dt is 

involved in calculations, the set of points Dm
t  can also 

be considered discrete: 

{(x, t)β, β = 1, r , r ≥ 1} = Dm
t . 

The set of observed values is denoted by the 
vector ψm, while the set of values calculated with the 
models is denoted as [ψ]m: 

 ψm = {ψm
αβ ≡ [Hα(ϕ)]mβ + [ξα(x, t)]mβ} ;  (1) 

 α = 
$$$$$
1, M ,   M ≥ 1 ,   β = 

$$$$
1, r ,   r ≥ 1 , 

where ϕ is the function of state; Hα(ϕ) is the model of 

observations; the subscript α denotes the type of 
observations; M is the number of measuring, 
functionally different devices; ξα(x, t) are the 
observation errors involving the errors of the device and 
the model itself. The superscript m is used for the 
parameters, which correspond to description of 

observations. The symbol []mβ is used for the operation 

of information transfer from Dt or Dh
t to the point 

(x, t)β of the set Dm
t . Usually it is the result of action 

of some operator of interpolation from Dh
t to D

m
t  for the 

components of the functions, that is 

 [Hα(ϕ)]β =  Ŝ (Hα(ϕ))⏐(x, t)β
, (2) 

 

where  Ŝ is the interpolation or projection operator. 

Each component ψ
m
αβ of the vector ψm is an 

individual value of the parameter at the point (x, t)β 

measured by a method of the type α (from a given set 
of types). The structure of the vector ψm is defined as a 
block one, in which the type of observations determines 
the block number α, and the block itself is made up of 
the values measured by the method of this type at all 
points (x, t)β of the area Dt, where the measurements 

are conducted. 
Similarly to Eq. (1) we define the structure of 

vectors calculated using the model 

 [ψ]m = {[ψ]mαβ ≡ [Hα(ϕ)]mβ.  (3) 

The operators of models of observations are 
selected to be bounded and differentiable with respect 
to the components of the vector function of state. 

Discrete analogs of these operators and operators  Ŝ in 
Eq. (2) must have similar properties. 

 

Models of processes and functionals  
of observations 

 
Let us return to the problem of the relations 

between observations and basic models of the processes. 
The general methodology of modeling is based on two 
key elements.3$5 

1. The mathematical model of the processes in the 
variational formulation is as follows: 

 I(ϕ, ϕ*, Y) 0 ,  (4) 

 ϕ ∈ Q(Dt) ,   ϕ* ∈ Q*(Dt) ,   Y ∈ R(Dt) . 

2. The set of functionals defined on the set of 
functions of state is 

Φk(ϕ) = ⌡⌠
Dt

 Fk(ϕ) χk(x, t) dD dt,  k = 
$$$$$
1, K ,  K ≥ 1. (5) 

Here I(ϕ, ϕ*, Y) is the integral functional, which 
corresponds to the model in the differential 
formulation; ϕ is the function of state; Q(Dt) is the 
space of functions satisfying the boundary conditions; 
ϕ* are sufficiently smooth conjugate functions from the 
space Q*(Dt) conjugate to Q(Dt); Y is the vector of 
input parameters of the model from the set of 
admissible values R(Dt); Fk(ϕ) are the preset scalar 
differentiable functions on the set of functions of state; 
χk(x, t) ≥ 0 are the weighting functions generating 
Radon or Dirac measures in the domain Dt (Ref. 2). 
These measures are convenient for modeling because 
they provide for uniformly taking into account the 
fields of values of the functions in the functionals. 
These fields are distributed continuously and discretely 
in the domain Dt and can be taken into account either 
separately or in a combination. 
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The technique for construction of integral 
identities for models of the atmospheric and ocean 
physics, transfer and transformation of pollutants, as 
well as the methods of algorithmic arrangement of 
direct and inverse relations between functionals of type 
(5) and models in form (4) are sufficiently well 
developed.3$6 Therefore, to arrange interaction between 
observations and models, it is sufficient to express the 
information about observations (1) and (2) in terms of 
the functionals of type (5) to include them into the 
modeling system. 

The question arises here on what is it needed for. 
The point is that it is convenient to arrange the data of 
observations of different type arbitrarily spaced in the 
domain Dt in terms of functionals. For manipulation of 
functionals defined in Dt on the set of the functions of 
state, powerful mathematical apparatus of variational 
principles and conjugate problems is being applied. 
With this apparatus, every (even single) observation is 
related to the whole set of input parameters and 
external actions participating in the numerical models 
at any number of the internal degrees of freedom. 

Consider equation (4) from the viewpoint of the 
theory of measurements. The weighting function 
χk(x, t) in it can be interpreted as a function of 
deployment of the devices in the domain Dt. It 
determines the contribution of the function Fk(ϕ) value 
at the point (x, t), which corresponds to a reading of 
the device set at this point, to the functional Φk(ϕ), 
that is, the resultant measured value of the parameter 
Fk(ϕ(x, t)) in the domain Dt. The subscript k denotes 
the type of measurements. In particular, if χk is taken 
in the form of the Dirac delta function, then the value 
of the functional is equal to the value of the measured 
function at the point, which is the carrier of the 
weighting  function. 

Now, starting from definitions (1)$(3) and (5), 
we can form two types of functionals. 

1. Functionals of œobservationsB: 

 Φk(ϕ) = ⌡⌠
Dt

 Hα(ϕ) χαβ(x, t) dD dt , 

 k = 
$$$$$
1, K ,   K = Mr ,   {k} ≡ {α, β} ,  (6) 

where χαβ(x, t) are the preset weighting functions. If 

χαβ(x, t) is equal to Dirac delta function with the carrier 

at the point (x, t), then the set of functionals (6) is the 
set of formulas for estimation of the components of 
vectors (1) and (3). Radon measures χαβ(x, t) dDdt are 

of interest for practical application since they are taken as 
a sum of Dirac measures concentrated at a collection of 

points from the set Dm
t  (Ref. 2). 

2. Functionals of "quality." 
The functionals of this type have a character of 

the discrepancy between the components of the vector 
of observations calculated using model (3) and under 
real conditions (1).  They express the measure of errors 
 

ξα(x, t) in Eq. (1) and are used in the problems of 

assimilation of the measured data with the use of 
models of the processes studied, diagnostics of the 
quality of models, and identification of their parameters 
and sources of external actions from the set of measured 
data. 

The structure of the functionals of quality is 
defined by the following formulas: 

 Φh
0(ϕ) = [([ψ]m $ ψm)T W0([ψ]m $ ψm)]Dm

t

 ,  (7) 

 Φ0(ϕ) = ∑
α = 1

M

 ⌡⌠
Dt

 {Wα([
 ŜHα(ϕ)]m $ ψm

α)× 

 ×([ ŜHα(ϕ)]m $ ψm
α)} χα(x, t) dD dt ,   (8) 

where W0 and Wα are the weighting matrices; χα are 

the weighting functions, χαdDdt are Radon measures, 

which are chosen so that they allow for all components 
of the vector ψm; the subscript h is for the discrete 
analog; and T denotes the transposition. The scalar 

product in Eq. (7) is defined on the discrete set Dm
t . 

Given the measures are selected in such a way, the 
functionals in the form given by Eqs. (7) and (8) are 
equivalent in respect to the collection of observations. 

The functional in form (8) has a wider spectrum 
of modifications than functional (7), because it allows 
selection of the weighting matrix and functions, 

measures, as well as of the operators  Ŝ. 
When it is needed to combine the problems of 

data assimilation and that of identification of models 
with the problem of planning experiments in order to 
make the experiments more informative, the solution of 
such complex problems requires simultaneous use of 
both the functionals of "individual" observations (6) 
and functionals of quality (7) and (8). 

 

Some relations of the theory of model 
and functional sensitivity  

 
In order to finally solve the problem of inclusion 

of functionals into the technology of modeling, the 
algorithms of calculation of functions 

 γh
k(ϕ) ≡ 

дΦh
k(ϕ)

дϕ
 ,   k = 

$$$$$
1, K ,    ϕ ∈ Qh(D)   (9) 

are to be constructed. These functions are defined at 

the nodes of the grid domain Dh
t and take part, as 

sources, in the corresponding conjugate problems for 
the methods of inverse modeling and algorithms for 
studying sensitivity of models and functionals. 

If some set of functionals is defined and the set of 
conjugate problems with sources (9) is constructed for 
it, then the main relations of sensitivity for these 
functionals are constructed by the algorithm3,4: 
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 δΦh
k(ϕ) = 

д
дζ I

h (ϕ, ϕ*
k, Y + ζδY) ζ = 0 ≡ 

 ≡ Rh(ϕ, ϕ*
k, δY) ,  k = 

$$$$$
1, K ,  (10) 

where Ih is the discrete analog of the functional of 
model (4); ϕ and ϕ* are the solutions of the main and 
conjugate problems generated by the functionals Ih and 

Ih + Φh
k, respectively; the symbol δ denotes variations 

of the corresponding parameter; ζ is the actual 
parameter.  For example, for the model of atmospheric 
hydrothermodynamics combined with the model of 
transfer and transformation of pollutants accepted as  
a basis for solution of climatic and ecological problems 
of monitoring and prediction,5 equations (10) have  
the form: 

δΦk(ϕ) = ⎝
⎛

⎠
⎞дI(ϕ, ϕ*

k, Y)

дY
 , δY  ≡ R(ϕ, ϕ*

k, δY) = 

= ⌡⌠
Dt

 {c3δQTT*
k + c4δQqq*

k + 

+ ∑
α = 1

n

 cα+4[δQcα $ δ(B(C))]α} dD dt + 

+ ⌡⌠
D

 ∑
i = 1

4+n

ciδψiϕ*
i t = 0mdD + R1(ϕ, ϕ*

k, δY) + 

 + R2(ϕ, ϕ*
k, δY) + R3(ϕ, ϕ*

k, δY) ,  (11) 

where R1, R2, and R3 have the form: 

R1(ϕ, ϕ*
k, δY) ≡ ⌡⌠

Ωt

 
⎩⎪
⎨
⎪⎧
δUn ∑

i = 1

4+n

 ciψiϕ*
ik 

m2

π  + 

+ 

⎭⎪
⎬
⎪⎫

∑
i = 1

4+n

 ciUnδψiϕ*
ik 

m2

π  $ 
δπ
π2 ∑

i = 1

4+n

 m2ciUnψiϕ*
ik  dΩ dt , (12) 

R2(ϕ, ϕ*
k, δY) ≡ 

≡ ∑
i = 1

4+n

 ci 

⎩⎪
⎨
⎪⎧

 ⌡⌠
Dt

 [δμi grads ψi grads ϕ*
ik + 

δvi

m
 

дψi

дσ  

дϕ*
ik

дσ  ] m2
 dD dt + 

 + ⌡⌠
Ωt

 δriϕ*
ikmdΩdt + 

⎭⎪
⎬
⎪⎫

⌡⌠
St

 δτi ϕ*
ikmdS dt  ,  (13) 

R3(ϕ, ϕ*
k, δY) ≡ 

≡ ⌡⌠
Ωt

 {G*
kδUn + U*

nkδG + (U*
nk $ UnT*

k)δπ $ 

$ πT*
kδUn} m dΩ dt $ ⌡⌠

S

 T*
kδ(Gsπ) + π*

kδπ t = 0 dS . (14) 

Here we use the designations from Refs. 5 and 6: 

ϕ = {ϕi, (i = 1, 4 + n } ≡ {u, v, T, q, Cα (α = 1, n )} 

 

 

are some functions of state of the basic model; 
ψ = (π/m)ϕ; the asterisk denotes the corresponding 
components of the conjugate functions; Un is the 

component of a velocity vector U = (π/m)× (u, v, ⋅σ) 
normal to the boundary Ωt of the domain Dt; St is the 
projection of the domain Dt  onto the Earth’s surface; 

u, v, and ⋅σ are the components of the velocity vector 
along the directions of the coordinate axes x, y, and σ, 
respectively; T is the temperature; q is the specific 
humidity; Cα is the pollutant concentration; n is the 
number of different pollutants; G is the geopotential; π 
is the function of pressure; m is the scaling factor of the 
coordinate system; dD, dΩ, and dS are the elementary 

volumes and areas; ci (i = 1, 4 + n ) are the weight 

coefficients to fit the physical dimensionality of terms 
in the integral identity of model (4); μi and νi are the 
coefficients of horizontal and vertical exchange for the 
pollutant i; ri and τi are the turbulent flows at the 
boundaries Ωt and St.  The symbol δ in the right-hand 
sides of Eqs. (11)$(14) denotes variations of the input 
(relative to the model) parameters: components of the 
vector of state ϕ, ψ, (δψi = πδϕi + ϕiδπ)/m, 
δϕi = (mδψi $ ϕiδπ)/π), the vector of parameters Y, 
the sources of heat QT, humidity Qq, and pollutants 
QC. The term δ(B(C)) means the variation of the 
operator of pollutant transformation because of 
variations of rate constants of reactions included into 
the operator. The terms containing variations of heat 
influx δQT depend on variations of concentrations of 
optically active gases. For their calculation, the complex 
basic model of hydrothermodynamics with the radiative 
block is considered in combination with the model of 
pollutant transport. In this case, a new type of conjugate 
equation arises as a part of the model of pollutant 
transfer. The new point is the appearance of terms 
allowing for information about tendencies in the influence 
of inhomogeneities in concentrations of optically active 
gases on the radiative processes. Besides, a new element 
arises in the basic models. It is the system of equations 
conjugate with respect to the radiative block. The 
formulas for calculation of the corresponding additional, 
to formulas (11)$(14),  expressions are given in Ref. 7. 

Equations (11)$(14) show (at the informative 
level) the character of relations of functionals to the 
parameters and external sources. The coefficients 

entering into Eqs. (11)$(14) as the factors at variations 
of the input data have the meaning of the functions of 
sensitivity of the functional Φk(ϕ) to the corresponding 
variations. 

Thus, we have completely developed the "inner" 
algorithmic cycle for combining the models and data of 
observations. With the use of the functions of 
sensitivity, the methods of direct and inverse modeling 
are realized within the framework of the general 

methodology of modeling described in Refs. 3 and 4. 
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Conclusion 

 

This paper presents the conceptual and 
algorithmic problems of combining the experimental 
and theoretical knowledge expressed in the data of 
observations and in mathematical models for 
investigations into the atmospheric processes jointly 
with the processes of transfer and transformation of 
pollutants.  An example of such combining is given 
by the relations of the theory of sensitivity for the 
functionals containing measured data. These relations 
are the basic point for the development of methods of 
inverse modeling. These methods provide for relating 
the information to a model. They involve the 
conjugate problems for the functionals of the class 
under consideration. These problems can have 
independent importance when studying scales and the 
character of interaction in a climatic system 
functioning under the influence of natural and 
anthropogenic factors. 
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