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Theoretically generated bi-directional reflection functions for nonhomogeneous 

oceanic boundary clouds are studied using a singular value decomposition algorithm 

in an attempt to find simple parameterization as a function of cloud properties. 

Results suggest that this should be possible using 4$6 cloud properties; but those cloud 

properties tried to date have not satisfactorily reproduced the shape of the bi-

directional function. 
 

1. INTRODUCTION 
 
Knowledge of the bi-directional reflection from the 

Earth's surface, including cloud cover when present, is 
required to accurately interpret measurements of 
radiance made by space-based instruments.  For clouds, 
the reflection pattern expected based on the 
microphysical composition of the cloud can be radically 
altered by the cloud macrophysics; that is, by the cloud 
shape and internal inhomogeneities in cloud properties. 

This paper studies the bi-directional reflection 
patterns of clouds at 0.83 μm visible wavelength using 
theoretical simulations, and attempts to develop a way 
to parameterize these patterns in terms of the properties 
of the cloud field.  Sample cloud fields built from the 
horizontal pattern of cloudiness in 45 Landsat scenes of 
marine boundary layer cloud are used.  These scenes 
include broken stratus and trade cumulus cases, as well 
as overcast scenes.1,2 

The current work has a number of limitations: 1) the 
independent pixel approximation (IPA) is used initially 
to derive the Landsat two-dimensional (2D) optical depth 
distributions which then generate the &true[ cloud field; 
2) only 2D (vertical and one horizontal dimension) cloud 
sections are treated so the full effects of 3D cloud field 
are not accounted for; 3) only single-layer low-level 
water clouds are considered; 4) conservative scattering 
(no absorption) is assumed; 5) a linear variation of cloud 
liquid water content with height in the cloud is assumed 
so there are no cloud holes. 

Section 2 describes the generation of realistic 
inhomogeneous cloud fields from the Landsat scenes. 
Section 3 outlines the radiative transfer model and 
describes the parameters of interest in this study. Section 
4 describes a singular value decomposition analysis of the 
bi-directional reflection patterns. Section 5 summarizes  
the major  points and conclusion of this work. 

 

2. GENERATION OF CLOUD SCENES 
a. Landsat inferred horizontal inhomogeneity 
 

Forty-five Landsat scenes of marine boundary layer 
cloud were available for use in this study.1,2  These were 
chosen from a total of 52 scenes by imposing a maximum 
of 10% of saturated pixels in each scene. The radiance field 

was converted to an optical depth field using 1D theory, 
with radiance thresholds determined by trial and error for 
each scene.  A scene is about 58 km square, and consists 
of 2048 by 2048 pixels at 28.5 m spatial resolution 
(except for a few scenes of 1024 by 1024 pixels at a 
coarser resolution). To select 2D cloud scenes, 60 evenly 
placed 10 km long strips are distributed over each scene. 
The cloud fraction and mean cloud optical depth are 
computed for each strip.  Samples are then selected from 
all scenes to fill as much as possible (20 samples were 
considered sufficient) a 6 by 6 matrix of cloud fraction 
and cloud optical depth (see Table I). This results in 341 
sample cloud scenes.  Note that not all bins are filled 
during this process: apparently marine boundary layer 
clouds do not occur in nature with optical depth > 20 and 
cloud fraction < 0.25, for example. 
 

TABLE I. Cloud scene samples in cloud fraction (Ac) and mean cloud optical depth (τ). 
 

τ Ac 

 0$0.01 0.01$0.25 0.25$0.50 0.50$0.75 0.75$0.99 0.99$1 

0$2.5 20 20 20 20 20 9 
2.5$6 0 20 20 20 20 20 
6$10 0 7 9 14 20 20 
10$18 0 3 2 4 11 20 
18$40 0 0 0 0 2 20 
> 40 0 0 0 0 0 0 
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b. Modeled vertical inhomogeneity 
 

The vertical dimension of the cloud field is 
generated based on an assumed linear variation of 
liquid water content with height within the cloud.  
This results in cloud water droplets whose size increases 
as the 1/3 power of their height within the cloud, 
while extinction increases as the 2/3 power of height. 
The shape of the clouds is imposed to match the 
statistics on cloud top bumpiness obtained from the 
Lidar In-Space Technology Experiment (LITE, Ref. 3). 
This requires placing 80% of the cloud above and 20% 
below some nominal level in the atmosphere.  Resulting 
cloud top bumps vary in vertical size from a few meters 
to 200 m, with a typical size of 50$60 m. 

The microphysical properties (extinction and 
particle size) are discretized onto a computational grid 
for input to the radiative transfer model.  The input 
field also includes Rayleigh scattering effects in the 
atmosphere at the 0.83 μm wavelength for which the 
analysis is performed.  The atmosphere is simulated 
above but not below the cloud.  A black surface is 
assumed, to isolate the cloud effects. 

 

3. TOOLS AND VARIABLES 
 

a. Radiative transfer model 
 

The radiation model used in this study is the 
Spherical Harmonics Discrete Ordinates Method.4  In 
brief, it uses both spherical harmonics and discrete 
ordinates to represent the radiance field during 
different segments of the solution algorithm.  The 
spherical harmonics are employed for efficiently 
computing the source function including the scattering 
integral.  The discrete ordinates are used to integrate 
the radiative transfer equation through the spatial grid.  
The solution method is to simply iterate between the 
source function and radiance field, and is akin to a 
successive order of scattering approach. 

For each sample, 2D radiative transfer solutions 
are obtained for 10 solar zenith angles, θ0: 0°, 5°, then 
every 10° to 85°.  Results obtained are the flux at the 
top of the cloud as a function of . , and the radiance at 
the cloud top as a function of x for 109 viewing angles 
(view zenith θ = 0°; and all combinations of θ = 5°, 
15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, and relative 
azimuth φ = 0°, 5°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 
160°, 175°, 180°). 

 

b. Anisotropy 
 

The anisotropic factor, ψ, is defined as 

ψ(θ, φ, θ0) = 
πI(θ, φ, θ0)

Fup(θ0)
 ,  (1) 

where I is the radiance at a particular angle and Fup is 
the upward flux.  ψ depends on the viewing angles θ 
and φ and the solar zenith angle  θ0. The anisotropy is a 
measure of the departure from Lambertian behavior and 
would be identically one for a Lambertian reflector. A 

mean value of anisotropy is computed from the 2D 
solution for each cloud sample, where I and F are the 
mean value of radiance and flux over the 10 km scene. 
If ψ were known exactly for a cloud field, a radiance 
measured at some given view angle could be used to 
accurately estimate the flux of energy from the whole 
hemisphere. Unfortunately, ψ is quite sensitive to cloud 
properties. 

 

4. SINGULAR VALUE ANALYSIS 
 

a. Theory 

 

The mean anisotropy functions, ψ, for all the cloud 
samples are used as input to a Singular Value 
Decomposition (SVD) analysis to search for clusters of 
similar shapes. This analysis follows Ref. 5. Each 
discretized anisotropy function, ψ(θi, φj, θ0k), is 
written as a vector where the value of ψ at successive 
view angles (θi, φj) form the M components of the 
vector, Ym. A deviation vector is then formed as: 
dYm = Ym $ <Y>, where <Y> is the mean vector 
formed by averaging all cloud sample.  The N deviation 
vectors for all the cloud samples are then written as the 
columns of an M × N matrix.  In this implementation, 
M = 109 and N = 341.  Singular value decomposition, 
in this case following Ref. 6, is used to expand the 
matrix into three components: 

dY = UDVT,  (2) 

where the central matrix, D, is a diagonal matrix 
whose elements d1, d2, ..., dL are the singular values. 
Note that L in general is not equal to either M or N. 

Sorting the singular values into descending order 
allows the importance of each component to be 
assessed.  The mean variance is given by: 

<d2>random = 
1
L
 ∑
k=1

L

 d2
k.  (3) 

If we identify the value k′ for which all variances 
before that are greater than the mean variance, then the 
first k′ (largest) singular values can be identified as 
&degrees of freedom[ for the problem; while the 
remaining values merely contribute noise. 

The vectors in U are the orthogonal eigenmodes 
and can be used to categorize each anisotropic function 
as &closest[ to a particular mode: 

T = YT U,  (4) 

T is a single row of numbers, and the largest number 
indicates the &cluster[ to which the anisotropic 
function belongs. 

The eigenmodes can also be used to approximately 
reconstruct each anisotropic function.  One requires k′ 
coefficients multiplying the eigenmodes identified in 
the degree of freedom analysis.  These coefficients are 

simply the coefficients of U in Eq. (2), or c = dk V
T
k. 
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b. Results 
 
Results (Fig. 1) show that 4$6 mode shapes are 

generally sufficient to describe the anisotropic 
functions, for all solar zenith angles.  Not only do these 
first 4$6 mode shapes have variance larger than the mean 
variance; but they cumulatively capture almost all the 
variance.  This result suggests that there may be hope of 
describing the anisotropic variability of cloud fields with 
a relatively small number of parameters. 

 

 

 
FIG. 1. Amount of anisotropic variance captured as a 
function of number of modes for several solar zenith 
angles. 

 

Deviation mode shapes (ψmode $ ψ$, where ψ$ is the 
overall mean anisotropic function) are given for 
overhead Sun in Fig. 2.  Of particular interest is Mode 
4, which is not entirely symmetric with respect to 
forward and backscattering in this case.  This picks up 
on a few cloud samples in this dataset which contain 
oriented clouds and therefore have a preferred 
scattering direction even for overhead Sun. 

 

 
 

FIG. 2. First four deviation mode shapes in the 
principal plane for overhead Sun. 
 

The coefficients of the first four mode shapes are 
shown in Fig. 3 for a solar zenith angle of 45° as a 
function of the cloud parameter to which each 
coefficient is most sensitive.  The solid line in each 
figure is a least-squares fit to the points.  The 

parameter στ is the standard deviation of the cloud 
sample.  ν is called the gamma function parameter, and 

is defined as ν = (τ$/σ)2 (Ref. 6). It is obvious that a 
single parameter fit is not sufficient to capture the 
complete variability of these coefficients.  Furthermore, 
the parameter to which each coefficient is most 
sensitive changes at different solar zenith angles (see 
Table II). 

 

TABLE II. Single parameter fit of SVD mode 
coefficients with best regression. 

 

 θ0 = 0° θ0 = 45° 

 Parameter r2 Std error Parameter r2 Std error

C1 A
c
 0.84 11.5 A

c
 0.77 8.39 

C2 Log10(ν) 0.34 6.71 στ 0.31 4.17 

C3 Log10(τ) 0.29 11.5 Log10(ν) 0.45 13.1 
C4 σ

z
 0.02 38.0 Log10(τ) 0.2 22.8 

 

Table II summarizes the sensitivity of the first four 
mode coefficients, giving the parameter which results in 

the maximum linear regression coefficient, r2, and the 
resulting standard error in the fit. Note that, as 
suggested in Figure 3, the regression coefficient is not 
very large, especially for other than the first mode 
coefficient.  Further, since using a different parameter 
(not shown) often results in a lower standard error, 
these single parameter fits cannot be assumed to 
provide a satisfactory representation of the variation of 
the mode coefficients.  Here σz is the standard 
deviation of the cloud height, and is a measure of cloud 
bumpiness or shape.  Other parameters which were 
considered, but which don’t appear to capture the 
behavior of the coefficients, were a measure of cloud 
vertical to horizontal aspect ratio (AR) and the mean 

size of the gap between clouds (gap
⎯

).  It may be that 
there exists a singular parameter which captures this 
variability better, but no such parameter has yet been 
found. 

Because patterns do seem evident in the previous 
results, two-parameter linear regressions have also been 
performed for all combinations of the 7 cloud 
parameters considered above.  Table III summarizes the 
combinations which result in the minimum standard 
error.  Interestingly, the parameter providing the best 
single parameter fit is not always included in producing 
the best two parameter fit.  Substantial reductions in 
standard error are found in most cases relative to the 
single parameter fits. 

 

TABLE III. Two parameter fit of SVD mode 
coefficients with minimal error. 
 

 θ0 = 0° θ0 = 45° 

 Parameter Std Parameter Std 

 1 2 error 1 2 error 

C1 A
c
 στ 3.52 στ gap

⎯
 3.99 

C2 Log10(ν) στ 6.02 στ AR 5.16 

C3 Log10(τ) AR 4.47 AR στ 6.95 

C4 Log10(τ) AR 2.58 Log10(ν) gap
⎯

 3.11 
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FIG. 3. Coefficients of first four mode shapes as a function of cloud parameter to which each is most sensitive, 
θ0 = 45°. 

 

 
 

FIG. 4. Reconstructed versus original anisotropic function. 
 

Figure 4 shows the reconstructed ψ plotted 
against the actual ψ.  The solid gray symbols are for 
ψ reconstructed by combining the first 4 eigenmodes 
using the coefficients, c, obtained from the SVD 
analysis.  The open symbols are for ψ reconstructed 
by combining the same four eigenmodes using 
coefficients obtained from the one or two parameter 

linear curve fit as a function of a cloud property with 
minimum standard error. It is quite obvious that 
while the 4 SVD mode shapes provide an excellent 
reconstruction of the actual ψ function, the curve-
fitted coefficients are inadequate.  Factor of two 
differences are quite typical between the two 
reconstructions.  The overall root-mean-square (RMS) 
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error is 40%.  Even more troubling are the zero and 
negative values which are predicted by the curve-fitted 
reconstruction.  Clearly such a reconstruction is not 
adequate for use in inverting radiance to flux. 

 
c. Other evidence 

 
A similar analysis (not shown) was previously 

performed on another set of theoretical results.  In that 
case the cloud fields were much simpler.  Constant 
effective radius of the cloud water droplets, constant 
extinction in each cloud column, and flat-topped clouds 
were assumed.  In that case the reconstruction of the ψ 
function was somewhat better, following the high 
density area in Figure 4 without the outlying points $ 
and certainly without zero and negative values of ψ.  
This suggests that the variability in cloud top shape, 
particle size, and extinction are likely candidates as 
controlling variables in reconstructing the eigenmode 

coefficients. However, the parameters that have so far 
been constructed in an attempt to capture this variability 

have clearly failed to reproduce the right shape. 
The analysis was also repeated using only the 

overcast (Ac > 0.99) cloud scenes. In that case there is 
a much more systematic variation of the SVD 
coefficients with optical depth in particular.  This 
results in a somewhat better reconstruction of ψ, with 
RMS errors on the order of 20% overall-half that in 
Fig. 4; but there are still a number of points near and 
below zero in the reconstruction. 

 

5. CONCLUSIONS AND FUTURE DIRECTIONS 
 
A theoretical analysis has been performed which 

suggests that it should be possible to capture the 
variability in the anisotropic behavior of clouds using 4$6 

parameters.  However, the results obtained to date using 
typical parameters such as cloud fraction and optical 
depth, as well as additional parameters describing the 
variability of optical depth and cloud shape, have not 
been found to produce the desired results.  It is possible 
that a satisfactory fit of the coefficients could be obtained 
if the mode shapes could be transformed by linear 
combination into another orthogonal set; or if some new 
parameter which describes the variability of the cloud 
field could be identified.  However, at this point there is 
no obvious strategy for how to do this.  
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