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A need to examine the problem of radiative transfer in 
the two-layer broken cloudiness was repeatedly discussed by us 
when Georgii Aleksandrovich was alive. I consider it my duty 
to implement the conceived ideas as a mark of my profound 
gratitude and respect for Georgii Aleksandrovich − my 
Teacher, Colleague, and Friend. 

Tat’yana Zhuravleva 
 

Mean fluxes of solar radiation at different atmospheric altitude levels are 
calculated by two methods: (1) approximate method (under assumption of random 
cloud layer overlap) and (2) method of closed equations based on the Monte Carlo 
solution of equations for mean intensity in the two-layer broken cloudiness. The 
calculations have been done for the cloud parameters characteristic of the typical 
cloud systems (St) − (As), (St) − (Ci), (Cu) − (As), and (Cu) − (Ci) at mid-
latitudes of the Northern Hemisphere. It is shown that, depending on the 
geometrical and optical cloud parameters, the relative difference between the 
upwelling and downwelling radiative fluxes, calculated by different methods, may 
reach several tens of  percent.  

 

1. INTRODUCTION 

 
Atmospheric cloud layers may simultaneously 

occur at different altitude levels: two or more cloud 
layers are usually associated with the passage of 
atmospheric fronts or decay of massive cumulus or 
cumulonimbus clouds. The multilayer structure of 
frontal clouds within the troposphere over the 
European part of the former USSR was studied by 
Baranov1: the average annual number of cloud layers 

(being approximately the same for warm and cold 
seasons) is given in Table I. 

The data on multilayer cloud structure over 
different regions of the former USSR were presented by 
Dubrovina.2 A disadvantage of these data is the lack of 
information concerning upper-level clouds. The low- 
and medium-level clouds, in accordance with Ref. 2, 
have a single-layer structure in 30$50% of cases, two-
layer structure in about 30% of cases, and three- or 
four-layer structure in 30% of cases in summer and 20% 
of cases in winter. 

 
TABLE I. Recurrence (in %) of the number of cloud layers over the European part of the former USSR.1 

 

Front Number of layers 

 1 2 3 4 5 and more 

Warm 42.5 37.1 15.3 4.7 0.4 
Cold 53 32 12 more than 4 layers $ 3 $ 
Occlusions 40.1 40.2 15 4 0.7 

 

At present there are well-developed methods for 
calculating radiative effects in horizontally 
homogeneous multilayer cloudiness (see, for example, 
Ref. 3). However, when clouds within at least one 
layer are broken, the radiative characteristics are 
calculated by approximate methods developed within 
the framework of the deterministic radiative transfer 

theory. This circumstance makes them especially 
attractive for practical implementation, for example, 
for calculating the short-wave radiative influxes in 
radiative codes4$8 of the general atmospheric circulation 
model (GCM). A significant disadvantage of the given 
approach is the lack of any estimates of the accuracy of 
these methods. 



G. A. Titov and T.B. Zhuravleva Vol. 12,  No. 3 /March  1999/ Atmos. Oceanic Opt.  
 

197

For the Poisson model of broken cloudiness we 
obtained the equations for the average intensity and 
developed the Monte Carlo algorithm for calculation of 
the average solar radiation fluxes in two-layer clouds. 
The aim of the present paper is to estimate, based on 
the algorithm proposed here, the accuracy of the 
approximate method for calculation of the mean fluxes 
in two-layer broken cloudiness. This will allow the 
applicability limits of the horizontally homogeneous 
cloud model to be specified for a class of problems 
connected with calculations of the energy 
characteristics of the two-layer cloudiness. 

 
2. THREE-DIMENSIONAL DISTRIBUTION OF 

CLOUDINESS 
 

To simulate the spatial structure of multilayer 
cloudiness, we need information on the three-
dimensional (3D) cloud distribution, which 
incorporates at least the following information: 

− total cloud fraction and amount of clouds at 
different altitude levels; 

− recurrence of different cloud types and their 
combinations; 

− vertical structure of cloud systems (the number 
of cloud layers and the altitudes  of cloud boundaries). 

The State of the art of the studies on climatology 
of cloud cover has been reviewed in detail in Refs. 9$
14. These papers are valuable, because they summarize 
the results of cloud observations by numerous groups of 
researchers by means of ground-based network, airborne 
sensing facilities, and meteorological satellites. 

Detailed notion of the mean total cloudiness, its 
variability, and recurrence over the globe for different 
seasons and latitudes can be inferred from Refs. 2, 9, 
and 15$18. Marine and continental observational data 
on the recurrence of different cloud types and their 
combinations have been compiled into special atlases by 
the American scientists from the Naval Oceanographic 
Center and National Center for Atmospheric Research. 
These data compiled for 6 cloud groups (Ci − Cs − Cc 
(Ci), As − Ac (As), St − Sc (St), Ns, Cu, and Cb)  
allowed the most typical cloud systems: (Cu) − (As), 
(Cu) − (Ci), (Cb) − (As), (Ns) − (Cb), (St) − (Ci), 
(St) − (As), (Ns) − (St), (Ns) − (As), and 
(As) − (Ci)  to be identified. 

The above-mentioned data provide fairly complete 
notion of the statistical characteristics of the global 
cloud field and are cited in detail in Ref. 19. Also 
presented there are systematic data on the altitudes of 
the cloud boundaries and cloud thickness, mostly from 
the data of airborne sensing. 

As to the observational data on the cloud amount 
at different altitude levels, they are scarce and 
available only for separate regions of the Northern 
Hemisphere. In general atmospheric circulation models  
the vertical distributions of cloud amount are 
calculated from fairly simple empirical formulas, which 
relate the cloud fraction with the relative humidity in 

such a way that the calculated average zonal cloud 
distribution is in agreement with the corresponding 
realistic distribution. Meleshko20 proposed a method for 
calculating the cloud amount at three atmospheric 
altitude levels starting from the climatic data on the 
total cloudiness, outgoing radiation at the top of the 
atmosphere (TOA), temperature, and humidity. The 
model results agree fairly well with the accumulated 
empirical data on the vertical distribution of the cloud 
amount and the main large-scale features of the general 
atmospheric circulation (GAC). They can be used to 
calculate the radiative properties of multilayer clouds. 

 
3. MODEL AND CALCULATION TECHNIQUES 

 
3.1. Atmospheric model 

 
The model of the cloudy-aerosol atmosphere is 

defined in the altitude range 0 ≤ z ≤ H
t
atm as K separate 

atmospheric layers (Fig. 1). A unitary flux of solar 
radiation is incident on the atmospheric upper boundary  
in the direction ω

u
 = (ξ

u
, ϕ

u
), where ξ

u
 and ϕ

u 

 = 0 
are the solar zenith and azimuth angles. 
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FIG. 1. Schematic illustration of the cloudy-aerosol 
atmosphere containing two layers of broken cloudiness. 

 
Cloud model. Clouds occupy two separate layers 

Λi, i = 1, 2, with the subscripts i = 1 corresponding to 
the lower, and i = 2 to the upper layer. Each cloud 
layer is characterized by the altitudes of its lower 

boundary (bottom), H
b,i
cl , and upper boundary (top), 

H
t,i
cl : H

b,i
cl  ≤ z ≤ H

t,i
cl , i = 1, 2; H

t,1
cl  ≤ H

b,2
cl . 

Within Λi the optical model is specified in terms 
of the random scalar fields of the extinction 
coefficient σλ,i(r) ii(r), the single scattering albedo 

ω
λ,i(r) ii(r), and the scattering phase function 

gλ,i(ω, ω′, r) ii(r), i = 1, 2; the subscript λ stands 

for the wavelength. The random fields i1(r) and i2(r) 
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are assumed independent; the mathematical model of 
ii(r), i = 1, 2, is constructed with the help of the 
Poisson point process on the straight lines and is 
described in detail in Refs. 21 and 22; the optical 
characteristics within an individual cloud are assumed 
constant: σλ,i(r) = σλ,i, ω

λ,i(r) = ω
λ,i, 

gλ,i(ω, ω′, r) = gλ,i(ω, ω′), i = 1, 2. 

Aerosol model. Each ith aerosol layer Λ
i
a is 

assumed horizontally homogeneous and is characterized 

by the extinction coefficient σ 

a
λ,i, the single scattering 

albedo ω 

a
λ,i, and the scattering phase function  

g 

a
λ,i(ω, ω′, z), i = 1, 2, ... , K. The vertical 

stratifications of σ 

a
λ,i and ω 

a
λ,i, i = 1, 2, … , K, 

correspond to the mean-cyclic aerosol model23; the 
spectral variability and the vertical profile of  

g 

a
λ,i(ω, ω′, z) are not considered. The scattering phase 

function is calculated in the context of the Mie 
theory24 for haze L and the wavelength λ = 0.69 μm. 

The underlying surface reflects the incident 
radiation according to the Lambert law and has the 
albedo As. 

 

3.2. Method of closed equations 
 

Skorinov and Titov,25 based on the Poisson model 
of single-layer broken cloudiness, derived a system of 
closed equations for the average radiance in statistically 
homogeneous cloud fields and developed an algorithm 
for its solution by the Monte Carlo method, referred to 
as the Method of Closed Equations (MCE). Here, these 
results are generalized for the two-layer broken 
cloudiness under assumption that the random fields 
ii(r), i = 1, 2, are independent and statistically 
homogeneous. 

The problem on the accuracy and applicability 
limits of the MCE in case of the two-layer clouds, 
which can be solved by comparison of the results of 
corresponding numerical simulation, is beyond the 
scope of our paper. However, we believe that the 
results obtained for the single-layer broken cloudiness26 

and the hypothesis on independence of random fields 
ii(r), i = 1, 2, ensure reasonable accuracy here. 

 

3.3. Approximate calculation technique  
 

The approximate method for calculating a 
radiative characteristic F (for example, the radiative 
flux or radiance in a given direction) under conditions 
of the two-layer broken cloudiness is defined by the 
formula 

F = Kclr = 1, clr = 2 Fclr = 1, clr = 2 + Kpp = 1, clr = 2 Fpp = 1, clr = 2 + 

+ Kclr = 1, pp = 2 Fclr = 1, pp = 2 + Kpp = 1, pp = 2 Fpp = 1, pp = 2 . (1) 

Here, Fclr = 1, clr = 2, Fpp = 1, clr = 2, Fclr = 1, pp = 2, Fpp = 1, pp = 2 
are the clear-sky (clr) and overcast (pp) values of F in 
single- and two-layer cloudiness, calculated from the 
deterministic radiative transfer equation. Their weights 

are specified in accordance with a hypothesis of cloud 
overlap. Of the three well-known hypotheses $ 
minimum, maximum, and random overlap (see, for 
example, Ref. 27) $ GCM’s employ, as a rule, the last 
two or their combination. A hybrid scheme assumes the 
application of the hypothesis of maximum overlap for 
contiguous cloud layers (for example, located at the 
same altitude level) and the hypothesis of random 
overlap for non-intersecting layers (for clouds located 
at different altitude levels). These hypotheses were 
neither substantiated theoretically nor verified 
experimentally. They are chosen for each model to fit 
the results of simulation to the available data of 
satellite or ground-based observations.28 

Let N1 and N2 be the cloud fractions for the lower 
and upper cloud layers, respectively. Then the 

upwelling (downwelling) solar radiative fluxes F
↑(↓)

 at 
an altitude level z are calculated by the formulas: 

for the hypothesis of random overlap  

F
↑(↓)
rand(z) = (1 $ N1) (1 $ N2) F

↑(↓)
clr = 1, clr = 2(z) + 

+ N1 (1 $ N2) F
↑(↓)
pp=1, clr = 2(z) + 

+ N2 (1 $ N1) F
↑(↓)
clr = 1, pp = 2(z) + 

+ N1 N2 F
↑(↓)
pp = 1, pp = 2(z); (2) 

for the hypothesis of maximum overlap  

F
↑(↓)
max(z) = (1 $ max (N1, N2)) F

↑(↓)
clr = 1, clr = 2(z) + 

+ max (0, N1 $ N2) F
↑(↓)
pp = 1, clr = 2(z) + 

+ max (0, N2 $ N1) F
↑(↓)
clr = 1, pp = 2(z) + 

+ min (N1, N2) F
↑(↓)
pp = 1, pp = 2(z). (3) 

 
4. CALCULATION RESULTS 

 
The mean fluxes in the two-layer broken 

cloudiness are calculated by the method of closed 

equations, F
↑(↓)
MCE, and by the approximate method using 

the hypothesis on random cloud overlap, F
↑(↓)
rand. We 

chose the hypothesis of random overlap, because it is 
widely used in GCM radiation codes to calculate the 
radiative fluxes in the presence of clouds at different 
altitude levels. It is precisely these cloud situations that 
we consider at the given stage of investigations. The 

relative difference between the radiative fluxes F
↑(↓)
MCE 

and F
↑(↓)
rand will be characterized by the quantity 

δF
↑(↓)

(z) = 100% × (F
↑(↓)
rand(z) $ F

↑(↓)
MCE(z))/F

↑(↓)
MCE(z). 

 
4.1. Cloud parameters  

 
Fluxes of visible solar radiation were calculated 

for characteristic parameters of typical cloud systems 
(St) − (As), (St) − (Ci), (Cu) − (As), and  
(Cu) − (Ci) at mid-latitudes of the Northern 
Hemisphere11,19,29,30:  
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− optical depth of the lower layer (low-level 
clouds) varied in the range 10 ≤ τ1 ≤ 40, and that of the 
upper layer (medium- or upper-level clouds) − in the 
range 1 ≤ τ1 ≤ 25; 

− scattering phase function of water-drop clouds 
was calculated using the Mie theory24 for a wide drop 
size distribution29 (λ = 0.69 μm); the fluxes in ice-
crystal clouds were calculated for the scattering phase 
function of randomly horizontally oriented hexagonal 
ice crystals31; 

− single scattering albedo ωi = 1, i = 1, 2;  
− aspect ratio γi = Hi /Di (where Hi and Di are 

the thickness and the characteristic horizontal size of 
cloud elements of the ith cloud layer) in most 
calculations varied in the range 0 ≤ γi ≤ 2, i = 1, 2. The 
values of the parameter γi << 1 correspond to the cloud 
formations whose horizontal extent is much greater (at 
least by an order of magnitude) in comparison with the 
vertical extent. The values of the parameter 0.5 ≤ γ ≤ 2 
are typical of the chimney clouds. For the two-layer 
cloud systems, the value γ = 2 may be somewhat 
overestimated for the medium- (Ac-type) and upper-
level (Cc-type) clouds; however, it was used in our 
calculations to demonstrate the maximum differences 
which may be obtained for the mean fluxes calculated 
by two methods; 

− height of the atmospheric upper boundary  

H
t
atm = 16 km; 

− underlying surface albedo As = 0 (which roughly 
corresponds to the albedo of the ocean). 

 

4.2. Comparison of the calculated results 

 

To better understand the radiative transfer in the 
two-layer cloudiness, we consider two extreme cases, in 
which one layer is occupied with the overcast 
cloudiness and the other $ with the broken clouds. 

Case 1. Suppose that N1 = 1 and N2 < 1 (the 
layer of broken cloudiness Λ2 is over a horizontally 
homogeneous reflecting surface Λ1). The approximate 
method for calculating the solar flux by Eq. (2) is then 
reduced to the formula 

F
↑(↓)
rand(z) = (1 $ N2) F

↑(↓)
pp = 1,clr = 2(z) + N2 F

↑(↓)
pp = 1,pp = 2(z).(4) 

If the reflection from Λ1 had been described by the 
Lambertian law, we would have employed the results 
that have already been obtained (see, for example, 
Ref. 32). However, the lower cloud layer is non-
Lambertian reflector.  

Because the optical thickness of the aerosol out of 
the clouds is small (under the clear-sky conditions, 
τa ≈ 0.15), scattering within aerosol layers is negligible 
in comparison with clouds. Therefore, the solar 
radiative fluxes, transformed by the two-layer 
cloudiness, are primarily determined by (a) the 
unscattered radiation component that passes through 
gaps between the clouds of the upper layer and reaches 
the upper boundary of the lower-layer clouds  

Λ1 $ z = H
t,1
cl , and (b) the radiation incident on the top 

and sides of clouds belonging to the layer. 
When the mean upwelling fluxes at the altitude 

level z = H
t,2
cl  are calculated from formula (4), the 

contribution of the unscattered radiation component  
(a) that had passed through the cloud gaps and reached 

the altitude level z = H
t,1
cl  is described by the first term. 

In contrast with the MCE, this method makes no 
allowance for the fact that the radiation component 
reflected by the lower cloud layer on the one hand, is 
attenuated by the clouds belonging to the upper layer 
Λ2 and on the other hand, represents an additional 
source of energy that enhances the radiation interaction 
between the cloud layers. In addition, the MCE is 
capable of accounting adequately the contribution of 
the radiation component (b) to the formation of 

F
↑

(H
t,2
cl ). A part of radiant energy, after a single 

reflection or multiple reflections from the lower cloud 

layer, may reach the altitude level z = H
t,2
cl  through the 

gaps between the clouds and hence exceed the second 
term of formula (4), which describes the radiation 
"locked" between the two overcast cloud layers. To 
understand which of the factors mentioned above is 
responsible for the difference between  

F
↑

rand(H
t,2
cl ) and F

↑

MCE(H
t,2
cl ), additional studies are 

required (in particular, of the angular distributions of 
the transmitted solar radiation component at the 

altitude level z = H
b,2
cl  and of the reflected solar 

radiation component at the altitude level z = H
t,1
cl ). At 

the given stage we restrict ourselves to the quantitative 

estimate of the quantity δF
↑(↓)

. 
Now we consider the case of cloudiness with 

intermediate cloud fractions N2, because it has been 
just this case in which the radiative interaction between 
Λ1 and Λ2 may significantly amend the formation of the 
radiative fluxes.32 As calculations showed, for ξ ≤ 30°, 
10 ≤ τ1 ≤ 40, and 1 ≤ τ2 ≤ 25 (τ = 1 for ice-crystal 
clouds and τ ≥ 4 for water-drop clouds) the value of 

⏐δF
↑(↓)

⏐ at the cloud layer boundaries does not exceed 

5% when γ2 << 1. As γ2 increases, ⏐δF
↑

(H
t,2
cl )⏐ and 

⏐δF
↓

(H
b,1
cl )⏐ remain within the same limits, whereas 

the relative flux difference for the altitude levels 

z = H
t,1
cl  and z = H

b,2
cl  somewhat increases with the 

increase of τ2 and reaches about  
− 15% for γ2 = 2, τ2 = 25, and N2 = 0.5. 

As the solar zenith angle increases to 75°, δF
↑

(H
t,2
cl

) remains below 5$8% while 0 ≤ γ2 ≤ 2 (Fig. 2=). The 

difference between F
↓

MCE and F
↓

rand at the lower 
boundary of the layer Λ2 increases with γ2: for example, 

when τ1 = 40 and τ2 = 25, δF
↓

(H
b,2
cl ) changes from 

≈ −15% for γ2 << 1 to ≈ 30% for γ2 = 2. The latter is 
because in chimney-like clouds the portion of the 
unscattered radiation S and hence the net transmitted 
radiation component significantly decrease with the 
increase of ξ, whereas in clouds with the parameter 
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γ2 << 1, S changes insignificantly33 (up to ξ ≈ 80°). The 

large values of δF
↓

(H
b,2
cl ) lead to the significant 

difference between F
↑

MCE and F
↑

rand at the upper 

boundary of the layer Λ1: whereas δF
↑

(H
t,1
cl ) ≈ 

≈ $ 15% for γ2 << 1 and τ2 = 25, for γ2 = 2 it is as large 
as 40$60%, depending on τ1 (Fig. 2b). When the 
system of cloud layers is considered as a whole, the 

difference between the mean upwelling fluxes F
↑

MCE 

and F
↑

rand at the altitude level z = H
t,2
cl  translates into 

the difference of up to ≈ −20% between F
↑

MCE and F
↑

rand 
at the lower boundary of the layer Λ1. 
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FIG. 2. Mean upwelling and downwelling radiative 
fluxes and their relative difference δF↑(↓) (in %) at the 
boundaries of (a) the upper Λ2 and (b) the lower Λ1 
cloud layers for N1 = 1.0, τ1 = 40, N2 = 0.5, ξ = 75°, 
As = 0, and different aspect ratios γ2. 

 

Typically the medium- and upper-level clouds are 
shaped as bands whose characteristic horizontal  
 

extents (Dx along the axis OX and Dy along the axis 
OY) differ significantly. The calculations made for 
cloud bands extended along the axis OY 
(γx,2 = H2/Dx,2 = 0.5, γy,2 = H2/Dy,2 << 1) showed 
that at the boundaries of both cloud layers 

⏐δF
↑(↓)

⏐ ≤ 10% for the entire range of variation of 
cloud optical depths (see Fig. 2). 

Case 2. Suppose that N1 < 1 and N2 = 1 (the 
occurrence of the overcast cloud layer Λ2 over the layer 
of broken cloudiness is equivalent to the change of the 
boundary conditions for the underlying cloud layer and 
transfer from the unidirectional radiation source to the 
diffuse one).  

When the upper layer Λ2 is optically thin, it is 
expected that the two methods of mean flux 
calculations can be compared using the results that had 
been already obtained in Ref. 33. Let us consider two 
typical cloud systems, namely, (St) − (Ci) and 
(Cu) − (Ci). The overcast cirrus cloudiness is quite 
often encountered:  cloud fractions N ≥ 0.8 were found 
for Cs in 68% of cases in winter and in 44% of cases in 
summer, whereas for Cc and Ci clouds this was true in 
20% of cases.30  

For γ1 << 1 and practically for the entire range of 
variations of the input model parameters (10 ≤ τ1 ≤ 40 

and ξ ≤ 75°)⏐δF
↑(↓)

⏐ ≤ 5%, except for F
↑

(H
t,1
cl ). If the 

lower layer is occupied by cumulus clouds, for small 
and intermediate cloud fractions the upwelling fluxes at 
the upper boundary of the layer Λ2 and at its lower 

boundary Λ1 differ stronger: at γ1 = 2 δF
↑

(H
t,2
cl ) ≈ 

≈ $ (10 $ 15%) and δF
↓

(H
b,1
cl ) ≈ 10 $ 30%. As γ1 

increases, the relative difference between the  

mean upwelling fluxes at the altitude level z = H
t,1
cl  

changes from ≈10 − 20% to ≈ −25 − 50% for N1 ≤ 0.5 
(Table II). 

Now we assume that the upper cloud layer has 
large optical thickness: τ2 = 25 (medium-level As-type 
clouds). The upwelling flux at the upper boundary of 
the two-layer cloudiness is formed by the radiation 
component scattered only within Λ2 and by the 
component participating in the radiative exchange 
between the cloud layers. As calculations showed, the 
contribution of the layer Λ2 itself to F

↑(Ht,2
cl ) is large: 

thus, for the parameters indicated in the caption to 
Fig. 3 it exceeds 90%. As a consequence, the values of 

F
↑

(H
t,2
cl ), calculated by different methods, agree well 

practically for the entire range of variation of the 

input model parameters: ⏐δF
↑

(H
t,2
cl )⏐≤ 5% (Fig. 3=). 

For intermediate values of the optical thickness 

1 < τ2 < 25, the range of variation of ⏐δF
↑

(H
t,2
cl )⏐ is 

increased up to 10%. The difference between the 
downwelling fluxes at the lower boundary of the 
layer is also reasonable: the maximum value of 

δF
↓

(H
b,1
cl ) is ≈ − (10 − 15)%. 
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TABLE II. Radiative fluxes F
↑(↓)
rand and F

↑(↓)
MCE and their relative difference δF

↑(↓
 (shown in parentheses, in %) in the 

two-layer cloud systems (St) − (Ci) (γ1 << 1) and (Cu) − (Ci) (γ2 = 2) for N2 = 1, τ2 = 1, τ1 = 40, and ξ = 75°.  
 

z F
↑(↓)

 N1 = 0.1 N1 = 0.3 N1 = 0.5 

 
F

↑

rand 
0.439 0.533 0.627 

z = H
t,2
cl  F

↑

MCE, (St) $ (Ci) 0.427 (2.8) 0.513 (3.9) 0.605 (3.6) 

 F
↑

MCE, (Cu) $ (Ci) 0.495 ($11) 0.621 ($14) 0.711 ($11) 

 F
↓

rand 
0.569 0.472 0.374 

z = H
b,1
cl  F

↓

MCE, (St) $ (Ci) 0.584 ($2.5) 0.494 ($4.4) 0.399 ($6.2) 

 F
↓

MCE, (Cu) $ (Ci) 0.509 (11.8) 0.378 (24.9) 0.285 (31.2) 

 F
↑

rand 
0.0833 0.201 0.319 

z = H
t,1
cl  F

↑

MCE, (St) $ (Ci) 0.0685 (21.6) 0.174 (15.5) 0.287 (11.1) 

 F
↑

MCE, (Cu) $ (Ci) 0.158 ($47) 0.313 ($36) 0.425 ($25) 

 F
↓

rand 
0.649 0.672 0.694 

z = H
b,2
cl  F

↓

MCE, (St) $ (Ci) 0.646 (0.1) 0.665 (1) 0.686 (1.1) 

 F
↓

MCE, (Cu) $ (Ci) 0.666 ($2.6) 0.697 ($3.6) 0.716 ($3.1) 
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FIG. 3. Mean upwelling and downwelling solar fluxes 
and their relative difference δF↑(↓) (in %) at (a) 
external and (b) internal boundaries of the two-layer 
cloudiness for N1 = 0.5, τ1 = 40, N2 = 1.0, ξ = 30°, 
As=0, and different aspect ratios γ1. 

The relative differences between the fluxes at the 

internal boundaries of the two-layer cloudiness z = H
t,1
cl  

and z = H
b,2
cl  increase up to several tens of percent 

(Fig. 3b) and may reach 100% when the cloud fraction 
of the lower layer  is small and the optical thickness of 
the layer Λ2 is large. 

We now assume that the upper and lower layers 
are occupied with partial cloudiness: N1 < 1 and 
N2 < 1. Calculations were done for cloud fractions Ni, 
i = 1, 2, most typical of the low-, medium-, and high-
level clouds for the mid-latitudes of the Northern 
Hemisphere in summer20: 0.3 − 0.5 for low-level clouds 
and 0.2 − 0.3 for medium- and high-level clouds.  

The high-level cloud area is known to exceed 
4 × 106 km2 in almost 30% of cases, but the  
cloudiness is far from being always overcast.19 
Therefore, it is of interest to compare different methods 
for calculating the solar fluxes in cloud systems 
containing cirrus cloudiness, namely, (St) − (Ci) and 
(Cu) − (Ci). 

Now we consider F
↑

(H
t,2
cl ) and F

↓

(H
b,1
cl ) assuming 

that 0 ≤ γ1 ≤ 4 and γ2 << 1 (Fig. 4). For the cloud 
system (St) − (Ci), whose parameters vary in the 
ranges 10 ≤ τ1 ≤ 40 and 30° ≤ ξ ≤ 75°, the relative 
difference δF↑(↓) does not exceed 10%. The increase of 
the aspect ratio γ1, that is, transition to the system 
(Cu) − (Ci), has diverse effects on δF↑(↓):  whereas for 
small optical thickness of cumulus clouds (τ1 = 10) and 
small solar zenith angles (ξ = 30°) δF↑(↓) ≤ 10%, for 
τ1 = 40 and ξ = 75°, δF↑(↓)  reaches several tens of 
percent. Thus, for γ1 = 2, N1 = 0.5, and N2 = 0.3,  

F
↑

rand(H
t,2
cl ) is substantially underestimated in comparison 

with F
↑

MCE(H
t,2
cl ) [δF

↑

(H
t,2
cl ) ≈ $ 25%], while F

↓

rand

(H
b,1
cl ) greatly exceeds F

↓

MCE(H
b,1
cl ) [δF

↓

(H
b,1
cl ) ≈ 60%].  



202   Atmos. Oceanic Opt.  /March  1999/  Vol. 12,  No. 3 G. A. Titov and T.B. Zhuravleva 
 

 

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

τ1 = 40, ξ
u
 = 75°

F
↑(↓)
rand, N1 = 0.1

0 1 2 3 4 γ1

0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

b

=

Aspect ratio

0 1 2 3 4

0

20

40

60

80

F
↑
(H

t,2
cl )

F
↓
(H

b,1
cl )

δF
↑
, %

δF
 ↓
, %

γ1

γ
1

15

0

$15

$30

$45

τ1 = 10, ξ
u
 = 30°

F
↑(↓)
rand, N1 = 0.5

F
↑(↓)
MCE, N1 = 0.1

F
↑(↓)
MCE, N1 = 0.5

F
↑(↓)
rand, N1 = 0.1

F
↑(↓)
MCE, N1 = 0.1

F
↑(↓)
MCE, N1 = 0.5

F
↑(↓)
rand, N1 = 0.5

 

FIG. 4. Dependence of mean fluxes F
↑

(H
t,2
cl ) (=) and 

F
↓

(H
b,1
cl ) in the cloud system (Cu) − (Ci) on the aspect 

ratio γ1 for τ2 = 1, N2 = 0.3, γ2<< 1, As = 0, and 
different parameters of the lower cloud layer and 
illumination conditions. 
 

The calculations showed that the variations of the 
aspect ratio γ2, i.e., simulation of the upper-level clouds 
in the form of cloud bands or parallelepipeds, provided 
that γ2 ≤ 2, did not lead to significant changes of 

δF
↑

(H
t,2
cl ) and δF

↓

(H
b,1
cl ) in the cloud systems 

(St) − (Ci) and (Cu) − (Ci). 

Let us compare F
↑(↓)
MCE and F

↑(↓)
rand for cloud systems 

(St) − (As) and (Cu) − (As). We assume that the 
upper layer is occupied by Ac clouds which, in 
comparison with  As clouds, typically have smaller 
optical thicknesses. Our choice is because the 
altocumulus clouds occur during many macroscopic 
atmospheric processes, so they are quite often 
encountered in the atmosphere. If the low-level clouds 
(St or Cu) have relatively small optical thicknesses 
(τ1 = 10), then for the solar zenith angles ξ  ≤ 30° and 
values do not exceed 5%, independent of the value of γ2 
(Fig. 5). As τ1 and ξ increase, the dependence of 

δF
↑

(H
t,2
cl ) and δF

↓

(H
b,1
cl ) on the upper-level cloud field 

structure, characterized by the aspect ratio γ2, becomes 
stronger. For instance, in the system (St) − (As) the 
increase of γ2 from 0 to 2 results in the change of 

δF
↑

(H
t,2
cl ) from ≈ 10 to ≈ −10%, while δF

↓

(H
b,1
cl ) 

changes from ≈ −10 to ≈ 20%. When the layer Λ1 is 
occupied by cumulus clouds, the sensitivity of  

δF
↑

(H
t,2
cl ) and δF

↓

(H
b,1
cl ) to the upper-level cloud 

structure decreases; however, the relative difference 
between the mean fluxes calculated by the approximate 

method and the MCE increases: for γ2 = 2 δF
↑

(H
t,2
cl ) 

reaches ≈ −20%, and δF
↓

(H
b,1
cl ) reaches ≈ 40 − 50%. 
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FIG. 5. Dependence of mean fluxes F
↑

(H
t,2
cl ) (=) and 

F
↓

(H
b,1

cl ) (b) in the cloud system (Cu) − (Ac) on the 
aspect ratio γ1 for τ2 = 15, N2 = 0.3, N1 = 0.5, As = 0, 
and different parameters of the lower cloud layer and 
illumination conditions. 
 

5. CONCLUSION 
 

The mean fluxes of solar radiation in the two-layer 
broken cloudiness have been calculated using two 
methods: (1) approximate method (based on the 
assumption on random cloud overlap) and (2) method 
of closed equations, based on the Monte Carlo solution 
of the system of equations for the mean intensity. The 
MCE not only accounts for the stochastic cloud 
structure, but also, in comparison with the approximate 
method, provides more exact description of the 
radiative interaction between broken cloud layers. 

Calculations have been done for the optical-
geometric parameters of the cloud systems (St) − (Ci), 
(St) − (As), (Cu) − (Ci), and (Cu) − (As) and vertical 
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distributions of the cloud fraction19,20 typical of the 
mid-latitudes of the Northern Hemisphere. It has been 
shown that the relative differences between the 
upwelling fluxes at the upper boundary of the layer Λ2 
and between the downwelling fluxes at the lower 
boundary of the layer Λ1 in the cloud system 
(St) − (Ci) generally do not exceed 5−10%. When the 
upper layer  is occupied by the water-drop clouds of 
moderate optical thickness ((St) − (As), 4 ≤ τ2 ≤ 25), 
τ1 increases from 10 to 40, and ξ increases  from 30 to 

75°, the values of⏐δF
↑

(H
t,2
cl )⏐ and ⏐δF

↓

(H
b,1
cl )⏐ may 

increase up to ≈ 20%. In the cloud systems (Cu) − (Ci) 

and (Cu) − (As), the mean fluxes F
↑

(H
t,2
cl ) and F

↓

(H
b,1
cl

) depend only weakly on the calculation technique 
when the optical thickness of the cloud layer  Λ1 is 

relatively small (τ1 = 10) and ξ  ≤ 30°: ⏐δF
↑

(H
t,2
cl )⏐ and 

⏐δF
↓

(H
b,1
cl )⏐ typically are within 5% (rarely amounting 

to 10%). The larger the optical thickness of the cloud 
layers and the solar zenith angle, the greater is the 
difference between the mean fluxes. Thus, the 

approximate method may underestimate F
↑

(H
t,2
cl ) and 

overestimate F
↓

(H
b,1
cl ) in comparison with the MCE 

values by 25$30% and 50$60%, respectively. Depending 
on the cloud parameters, the relative differences 

between the fluxes at the levels z = H
t,1
cl  and z = H

b,2
cl   

may reach several tens (or even hundreds) percent in 
all two-layer cloud systems considered here. 
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