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Radiation transfer is considered in a spherical axially symmetric layer.  A 

boundary-value problem for the kinetic equation is solved by the method of 

successive approximations with the integration over characteristics of the partial 

differential operator. 

 

INTRODUCTION 

 

Recently the attention to the problem of radiation 
transfer in the atmosphere has strongly increased as a 
result of complex analysis of the physical, chemical, 
meteorological, and biological processes responsible for 
formation of the Earth’s radiation field. Radiation 
processes play the leading part in the atmospheric heat 
and power exchange and, consequently, in climate 
formation on the global and local scales. The impact  of 
anthropogenic and natural factors on the radiative 
processes in the atmosphere$Earth system (AES) may 
cause the destruction of the Earth’s biosphere self-
restoration potential thus leading to catastrophic 
consequences. That is why these problems attract not 
only pure scientific attention, but the public attention 
as well; they are nowadays discussed all over the world 
by a number of governmental and other organizations. 
Adequate understanding of the radiative processes is 
necessary for providing scientific and technological 
progress and for preventing possible negative 
consequences of the climate changes or significant 
deviations of the spectral-radiative balance of the 
planet. Unfortunately, no possible climate and 
biophysical changes can be predicted at present for 
certain. This is so, in particular, because of low 
accuracy of the description of radiation in the climate  
models as well as of the atmospheric and oceanic 
circulation. 

A system of optical sensing of the atmosphere and 
the Earth’s surface from ground-based stations, 
aircrafts, helicopters, air balloons, rockets, satellites, 
and orbiting manned stations could provide for quite an 
extended information.  However, such data have a 
common drawback because it is impossible, under field 
conditions, to determine and adequately monitor, at a 
time,  all the medium parameters, that are responsible 

for the formation of radiation field during the 
measurements.  The situation is complicated by the fact 
that the medium continuously varies in time and space, 
thus preventing reproduction of the measurement 
conditions.  The interpretation of experimental data 
together with theoretical calculations, made for  the 
controllable œdeterminateB conditions, allows 
significant extension of our knowledge about the 
environment. 

Constructing of radiation models of the Earth as a 
planet and the human habitat is of extreme importance 
for solution of a number of complicated applied and 
technical problems.  Among such problems there are, in 
particular, the development of space-based systems for 
monitoring the Earth’s surface; orientation, 
stabilization, navigation, and additional power supply 
of a spacecraft by using the back surface of solar 
batteries for reception of solar radiation reflected by 
the AES. 

This paper continues our long-term research on the 
development of methods and algorithms for numerical 
solution of the problems of radiative transfer in 
scattering, absorbing, and emitting spherical systems with 
a complex structure.1,2  This work has been stimulated, to 
a great extent, by a significant change in the information 
technologies due to implementation of high-efficiency 
multiprocessor computers with parallel structures. 

The studies based on spherical multidimensional 
AES models have been started in the 60s in connection 
with first space flights and the development of 
astrophysics and planetary physics. Axially symmetric 
systems occupy a significant place in the theory of 
radiative transfer in 3D finite-volume media. Axially 
symmetric models sufficiently well reflect the basic 
features or mechanisms of physical processes in a 
number of problems. B esides, the up-to-date computers 
make the solution of such problems quite realistic. 
Spherical axially symmetric models are interesting in 
connection with the following problems: 
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1. Investigation of a radiation field in the 
atmosphere of a spherical planet illuminated by an 
external (e.g., solar) parallel radiation beam.  This 
problem has various technical applications.  At the 
same time, it is the classical problem of astrophysics 
and atmospheric optics; 

2. Determination of the radiation field generated 
by a point source in an inhomogeneous spherical layer.  
It is not only applied, but also a classical problem of 
the radiative transfer theory, which involves calculation 
of the influence function (Green’s function) of the 
boundary-value problem for the kinetic equation; 

3. Examination of the reflection properties of a 
sphere illuminated by a parallel or diffuse external 
radiation beam.  Such a sphere can serve as a model of 
an individual cumulus cloud or an optically dense 
particle of some turbid medium; 

4. Investigation of the radiation field inside a 
spherical shell illuminated by an external radiation 
beam.  This problem is taken from the theory of 
spacecraft protection against the radiation. 

Introduction of an axial symmetry is a model 
element, which, on the one hand, only slightly distorts 
the physical process, while being, on the other hand, 
only a technical restriction (because of the 
multidimensional character of the problem), rather than 
the principle one (in order to make the problem less 
cumbersome).  For example, such a model allows one 
to  study purely spherical effects observed in polar 
regions, on the terminator, in twilight, near the Earth’s 
limb and horizon.  B esides, it can be applied to the 
problem of radiative transfer along a latitude, and the 
phase curve of the Earth’s brightness (fullness of the 
brightness disc, similar to the phases of the moon).  
Another important problem that can be solved using 
this model is the brightness of stars observed against 
the bright background of the Earth’s atmosphere, 
including limb directions, when the stars are observed 
from space and a sighting line passes above the Earth’s 
disk through its atmosphere.  B esides, the stars (passive 
sources), the active sources (such as lasers) can be used 
in the projects, now very urgent, which  study the 
tomography of the Earth’s atmosphere. 

We are interested in calculation of the AES 
brightness field simultaneously on the global scale.  
The atmosphere is considered as a spherical shell of the 
Earth.  For the case of observation from outside the 
atmosphere (for example, from a space orbit), the 
solution at the observation point is merely the solution 
obtained for the upper boundary of the shell without 
radiation extinction (taking into account the problem 
geometry). The complexity of the problem geometry is 
mostly due to shadowing of a vast areas by the Earth’s 
disc.  Therefore, we have to study a spherical shell, 
with the reflecting upper concave surface and the  
 

œvacuumB lower one, as well as the transparent  
cylinder side surface. 

First spherical models have been studied by 

V.V. Sobolev and I.N. Minin (Refs. 3$9) mostly in the 
single scattering approximation; multiple scattering was 

taken into account partially in the diffusion 
approximation for a plane layer.  This approach, 

referred to as Sobolev method, was significantly 
improved by O.I. Smoktii (Refs. 10$14) and 

L.G. Titarchuk (Refs. 15 and 16).  The single 
scattering approximation was also used by O.A. Avaste 

(Refs. 17$19). G.I. Marchuk, G.A. Mikhailov, 
M.A. Nazarliev, R.A. Darbinyan, and V.S. Antyufeev, 

significantly contributed  into solution of the spherical 
problems.  They have laid grounds for the Monte Carlo 

method in the atmospheric optics.20$31  Simultaneously 
T.A. Sushkevich has developed the determinate 

approach to modeling the global radiation field of the 
Earth.1,2,32$36  The methods from Refs. 37$40 were 

analyzed comparatively as applied to interpretation of 
the first  data acquired from space (Refs. 10$12, 19$

21, and 32$36), in particular, spectrophotometric 
measurements of the Earth’s horizon and background, 

as well as photographs of œspace sunrise and sunset.B 
The basic method used in our calculations of the 

spherical AES is the iteration method of characteristics 
(IMC).  It is a combination of the method of 
integration of the transfer equation over characteristics 
and the method of successive approximations by the 
number of scattering events supplemented with the 
procedures improving a convergence of iterations.  As 
follows from our experience, the algorithm for its 
optimal implementation should provide for parallel 
calculations.41$48 

The algorithms that use the method of 

characteristics (with or without interpolation) for two-
dimensional spherical axially symmetric system were 

first developed by T.A. Sushkevich (Ref. 1).  Some 
particular cases (with significant restrictions imposed 

on the structure of the scattering and absorbing 
medium, as well as on the illumination and observation 

conditions) of integration of the transfer equation in 
single-scattering approximation are considered in some 

papers by O.A. Avaste and O.I. Smoktii.  Later and up 
to date, when the spherical problem is being solved by 

the Monte Carlo method, the single-scattering 
approximation is realized by integrating over 

characteristics, which coincide with the ray trajectories. 
Among foreign scientists, there were Sekera and 

Lenobl (the U.S.A.) who attempted to solve the 
spherical problem.49  They proposed to use the method 

of successive approximations corresponding to series 
expansion of solution over a small parameter.  They  
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use the solution of the plane problem as the first 
approximation and the ratio of the effective height of 

the homogeneous atmosphere to the Earth’s radius as 
the small parameter.  Most foreign papers use the 

Monte Carlo method or approximate methods.42,49 
 

MATHEMATICAL STATEMENT OF THE PROBLEM 

 

Let us consider the problem of radiation transfer 

through the Earth’s atmosphere.  The atmosphere is 
treated as a spherical shell illuminated by the external 

parallel flux of radiation.  Let the direction of the OZ 
axis passing through the Earth’s center be opposite to 

the incident flux.  The atmosphere$Earth system is 
considered as two-dimensional: radius vector r of any 

point A(r) is determined by the distance r = | r | from 
the Earth’s center and the polar angle ψ measured from 

the axis of symmetry OZ of the system; y = cos ψ. The 
direction of propagation of a light beam s at the point 

A(r) is described in the local system   of spherical 
coordinates: by the zenith angle ϑ measured from r and 

the azimuth ϕ in the plane tangent to the sphere of the 
radius r at the point A(r).  The set of all points A(r) of 

the spherical shell forms the open domain G with the 
lower Glow and upper Gup boundaries $ spherical 

surfaces with the radii Rlow and Rup.  The vector field 
of all directions of light beams s(A) at every point A(r) 

forms the set of Ω = Ω+ ∪ Ω$ $ a unit sphere, where 
Ω+ and Ω$ are the hemispheres of s directions with 

 μ+ ∈ [0, 1] and μ$ ∈ [$1, 0]; μ = cos ϑ.  Let us 
introduce the sets b ≡ Glow × Ω+ and t ≡ Gup × Ω$. 

The task is to find the intensity of the attenuated 
direct radiation coming from sources and the stationary 

field of intensity of a single and multiply scattered 
radiation in a scattering, absorbing, and emitting 

spherical shell G with the boundaries Glow and Gup or 
beyond G.  The total intensity of radiation Φ(r, s) at 

the point A(r) in the s direction will be sought as a 
solution to the General B oundary-Value Problem 

(GB VP) of the radiation transfer theory1,2,41,43 

K̂Φ = Fin ,   Φ  t = Ft, Φ  b = εR̂Φ + Fb  (1) 

in the phase area Γ ≡ G × Ω + Gup × Ω$ + Glow × Ω+ 
with the linear operators: the transfer operator 

D̂ = 
ä
äs

 + σtot(r) ,  (2) 

äΦ

äs  r
 = 

= cos ϑ 

äΦ

är
 + 

sin ϑ
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 ⎣
⎡

⎦
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 $ 
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 ; 

the collision integral as a function of the source 

B(r, s) ≡ ŜΦ = σsc(r) ⌡⌠
Ω

 γ(r, s, s′) Φ(r, s′) ds′ , 

ds′ = dμ′ dϕ′ ;  (3) 

the integrodifferential operator K̂ ≡ D̂ $ Ŝ;  
the operator of reflection  

[R̂Φ](rlow, s) = ⌡⌠
Ω$

 q(rlow, s, s$)Φ(rlow, s$) ds$, s ∈ Ω+ ; 

σtot(r) and σsc(r) are the spatial distributions of the 

total cross section of radiation interaction with 

substance and the scattering cross section.  The 

function Fin is the density of radiation sources inside 

the shell G; Fb and Ft are the radiation sources at the 

boundaries of the spherical shell defined for the rays s 

directed inward the shell G; the parameter 0 ≤ ε ≤ 1 

fixes the act of interaction with the boundary. 

The boundary-value problem (1) is considered 

under natural restrictions, following from the physics of 

the process under study and the restrictions imposed on 

the coefficients, sources, and boundary conditions: 

a) σtot(r) and σsc(r) are finite, piecewise 

continuous and piecewise differentiable functions; 

b) γ(r, s, s′) is a continuous function of the 

scattering angle χ = arccos (s⋅s′), piecewise 

differentiable with respect to every variable; 

c) operators Ŝ and R̂ are uniformly bounded: 0 ≤ Ŝ

(1), R̂(1) ≤ 1; 

d) the media inside the shell G, on Glow and Gup 

are nonmultiplicative; 

e) Fin(r, s), Ft(rup, s$), and Fb(rlow, s+) are 

bounded, piecewise continuous or finite functions. 

Note that we consider here the spherical shell G. 

The problem for a sphere (for example, for a spherical 

cloud) can be reduced to the problem for a spherical 

shell by using the boundary conditions with reflecting 

boundary Glow having an infinitesimal radius Rlow.  

These conditions describe radiation propagation through 

the inner sphere bounded by Glow.  If the inner region 

is a cavity, then the "shooting through" condition is 

imposed on Glow.  If the inner sphere is a scattering or 

absorbing medium, then the "reflection condition" is 

imposed on Glow, which accounts for radiation 

extinction inside the inner sphere.  Such approaches 

extend the applicability of the radiation transfer model 

under consideration.  In particular, they allow a 

number of problems of astrophysics and planetary 

physics to be involved. 

The constructing  of a solution of GB VP (1) is 

based on analysis of properties of the functions Φ and B 
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(their continuity, differentiability, local properties).  

The continuity and differentiability of the source 

function B with respect to angular variables is 

determined to a great extent by the properties of the 

scattering phase function.  B ecause the scattering phase 

function depends on the scalar product s⋅s′, rather than 

on any particular direction separately, B is a locally 

smooth function with respect to s (while the function Φ 

is smooth on the average).  The degree of B smoothness 

with respect to spatial variables is the same as for the 

functions σsc, γ, and Φ.  Discontinuity of B is possible 

only on such surfaces, where the functions σtot(r) and 

σsc(r) are discontinuous.  Along the trajectories of 

characteristics, the function D̂$1B is smoother than Φ.  

Spatial derivatives of B have logarithmic singularities 

in the vicinities of points r ∈ G on the surfaces of 

discontinuity of the coefficients σtot(r) and σsc(r) 

(Ref. 50). 

 

METHOD OF CHARACTERISTICS 

 
A solution to the boundary-value problem of the 

stationary transfer equation is sought by the method of 
successive approximations. This method assumes the use 
of ordinary collisional iterations of different 
multiplicity or modified iterations involving the 
accelerating procedures. 

To invert the differential operator of the transfer 
equation (2), we perform the integration over the 
characteristics at every iteration when calculating 
approximations of any order.  Of principal importance 
for a wide use of the method of characteristics is 
inclusion of interpolation51 and use of additive 
properties of exponents in the scheme of subdivision of 
calculations by sections along the characteristics. We 
fix the direction s ∈ Ω. Then we draw a straight line 
through the point A(r(0)) in this direction so that the 
equation for this straight line could be written as 

r(ξ) = r(0) $ ξs ,   $ ∞ < ξ < ∞ ,  (4) 

where D(r(ξ)) is the current point along the straight 
line; A(r(0)) is a fixed point on the straight line, from 
which the shift ξ = |AD| along the straight line is 
measured. Using such straight lines, we can transform  
the points of the domain G into the points (A, ξ) in a 
one-to-one manner. This procedure transforms the 
functions measurable in G × Ω into the functions 
measurable on Ω along the straight lines with 
directions s. The straight lines (4) being photon paths 
are the characteristics of the linear differential operator 
(2) (Refs. 1, 2, and 44$47). The transfer equation (2) 
written in an adequate form 

äΦ

äξ
 + σtot (r $ ξs) Φ(r $ ξs, s) = E(r $ ξs, s)   (5) 

with the known right-hand side can be solved explicitly 
by integration over a characteristic: 

Φ(r, s) = Φ(r $ ξs, s) exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ ⌡⌠
0

ξ

 σtot (r $ ξ′s) dξ′  + 

+ ⌡⌠
0

ξ

 E(r $ ξ′s, s) exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ ⌡⌠
0

ξ′

 σtot (r $ ξ′′s) dξ′′  dξ′ . (6) 

If the problem (5) involves nonzero boundary 
sources f, then it can be reduced to the problem with 
zero boundary conditions using a transformation of the 
following form: 

Φ0(r, s) = f(r $ ξs) exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ ⌡⌠
0

ξ

 σtot (r $ ξ′s) dξ′   (7) 

and presenting the solution as a sum Φ = Φ0 + Φd.  The 

function Φ0 corresponds to direct radiation from a 

source and has the same properties as f, but somewhat 

smoothed due to the exponential factor in Eq. (7).  For 

the function Φd corresponding to the multiply scattered 

diffuse component, we have the problem with a 

constant term in the equation F1 = Fin + ŜΦ0.  Let us 

separate out the term corresponding to the first 

scattering event Φ1 = D̂$1 F1, that is, present the total 

field as a superposition Φd = Φ1 + Φd$1.  In the 

equation for Φd$1, the constant term has the form  

Fd$1 = Ŝ D̂$1 F1.  Upon integration along the beam s 

(the action of the D̂$1 operator) and all directions of 

the unit sphere Ω (the action of the Ŝ operator), it 

turns out to be smoothed (as compared to Fin) both 

over spatial and angular variables.  A discontinuity of 

the function F1 with respect to angular variables results 

in a discontinuity of Fd$1 with respect to r.  As the 

index of scattering multiplicity increases, this 

discontinuity becomes smoother.  However, the 

discontinuities with respect to r in the coefficients σtot, 

σsc, and γ manifest itself in Φ and B at all iterations.  

Particular attention in the development of the  

numerical algorithm is paid to local properties of the 

solution, what allows one to increase the accuracy of 

solution and to describe the behavior of a solution in 

the vicinity of singular points. 
It follows from Eq. (6) that differential properties of 

Φ are determined by the corresponding properties of the 
functions B, σtot, and F within G and by smoothness of 
the boundaries, which is characterized by the differential 
properties of ξ(r, s).  Spatial and angular derivatives of 
the function Φ  exist and they are bounded.  In the 
vicinity of tangent directions s* (to lines or surfaces of 
discontinuity of the coefficients σtot and σsc), the 
derivatives have singularities of the form1: 



244    Atmos. Oceanic Opt.  /March  1999/  Vol. 12,  No. 3 T.A. Sushkevich 
 

 

äΦ

är
 ∼ 

1

|r $ r*|
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äs
 ∼ 

1

|s $ s*|
 . 

The function Φ is absolutely continuous along the 
beams s.  On the set of points r and s other than r*, s*, 
it satisfies the Hölder continuity conditions: 

|Φ(r + Δr, s + Δs) $ Φ(r, s)| ∼ A|Δr|1/2  |Δs|1/2 . 

The smoothness properties are taken into account at 
interpolation in the algorithm of integration over the 
characteristics. 
 

INTEGRATION OVER A CHARACTERISTIC  

WITHOUT INTERPOLATION 

 

The integration of the transfer equation over a 
characteristic without interpolation is performed along 
the entire path of the beam s from the calculated point 
A(r) to the point at which the beam s enters the region 
G through the upper Gup or lower Glow boundaries.  
Toward this end, Eq. (6) is used, where Φ(r $
 ξs, s) = f(r $ ξs, s) and E are the sources at the 
boundary and inside the shell.  The calculation of Φ by 
Eq. (6) with the known functions E and f is 
implemented in the following algorithm. 

1. The boundary (Glow or Gup), through which the 
beam s enters the shell G, and the distance ξ from the 
point A(r) to the entrance point Q(r $ ξs) are 
determined. 

2. Coordinates of the point Q with the radius 
vector r(ξ) = r $ ξs = (rξ, ψξ) are sought along with 
the angles (ϑξ, ϕξ), which describe the beam direction 
s in the local coordinate system of the point Q;  
f(r $ ξs, s) = f(rξ, ψξ, ϑξ, ϕξ) is calculated from the 
corresponding boundary conditions. 

3. Coordinates of the point D with the radius 
vector r(ξ′) = r $ ξ′s = (r′, ψ′) at a distance ξ′ from the 
point A are sought along with the angles ϑ′ and ϕ′, 
which describe the direction s in the local coordinate 
system toward the point D. 

4. The coefficients σtot(r $ ξ′s) are estimated at 
the point D(r′, ψ′); the source intensity E(r $ ξ′s, s) = 
= f(r′, ψ′, ϑ′, ϕ′) at the point D(r′, ψ′) is calculated in 
the direction s′ = (ϑ′, ϕ′) with the coordinates (ϑ′, ϕ′) 
of the direction s in the local coordinate system with 
the origin at the point D. 

5. Integrals are taken by the quadrature formulas 
with adaptive choice of the integration step Δξ, taking 
into account structure of the coefficients σtot(r), the 
source E(r, s), position of the point A(r), the beam 
direction s, and the scale of the section length ξ of the 
beam trajectory s. 

6. The function Φ(r, s) is calculated by Eq. (6). 
This algorithm allows one to choose the beam 

directions s independently and the spatial difference 
network $ arbitrarily. The single-scattering  
 

approximation is the basic for spherical models, because 
it is just this approximation that is used when solving 
inverse problems in addition to the brightness field 
component reflecting all peculiarities of the problem.  
Calculations in the single-scattering approximation use 
the method of characteristics without interpolation.  
Such an approach is time consuming.  However, the 
possibility to include any source and complex media 
into the algorithm is its important advantage.  At the 
same time, the above-mentioned disadvantage is 
compensated for, to a great degree, by the algorithm 
enabling parallel calculations. 

 
INTEGRATION OVER A CHARACTERISTIC WITH 

INTERPOLATION 

 

The integration of the transfer equation over  a 
characteristic with interpolation is used for calculation 
of the complete set of values of the difference functions 
Φ(rm, sn) with known difference functions E(rm, sn).  
In this case, a difference network with respect to all 
derivatives is introduced in the regions G and Ω.  The 
radii rk and the polar angles ψl form the spatial 
difference network: rm = (rk, ψl).  The set of calculated 
directions of the beam sn at every point rm of the layer 
is determined by a pair of angles sn = (ϑi, ϕj).  The 
radiation intensity Φ(rm, sn) at the point A(rm) in the 
direction sn is calculated by taking integral of the 
equation 

äΦ

äsn
 + σtot(rm) Φ(rm, sn) = E(rm, sn) 

over the characteristic $ the beam sn: 

Φ(rm, sn) = Φ(r′, s ′n) exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ ⌡⌠
0

ξ

 σtot (rm $ ξ′sn) dξ′  + 

+ ⌡⌠
0

ξ

 E(rm $ ξ′sn, sn) exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ ⌡⌠
0

ξ′

 σtot (rm $ ξ′′sn) dξ′′  dξ′. 

The shift ξ = |rm $ r′| along the beam sn is taken 
within a spatial cell.  A cell is a ring bounded by two 
conic (y1, y2) and two spherical (r1, r2) belts.  A beam 
can enter a cell either through the boundaries r2 and r1, 
or through the boundaries y2 and y1.  We denote the 
coordinates of the entrance point as (r′, ψ′) and the 
direction s as (ϑ′, ϕ′).  To take the integral over the 
section [0, ξ] of the characteristic, an interpolation by 
ξ is introduced for the function E(r, s) between its 
values at the nodes E(r1, ψ1, ϑ1, ϕ1) and 
E(r′, ψ′, ϑ′, ϕ′). The values Φ(r′, ψ′, ϑ′, ϕ′) and 
E(r′, ψ′, ϑ′, ϕ′) at the arguments r′, ψ′, ϑ′, and ϕ′ other 
than nodes of the difference network are calculated by 
interpolation between neighboring nodes of the 
difference network.1,2 
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To construct the algorithm of integration over the 
characteristics, the equation of characteristics should be 
elaborated in details in order to provide for such a set 
of arguments rk, ψl, ϑi, and ϕj, at which the iterations 
for obtaining values of Φ(rk, ψl, ϑi, ϕj) do not mix.  
B esides, it is necessary to be able to find the values of 
all four arguments r, ψ, ϑ, and ϕ at any point of the 
beam trajectory s from the given values of r1, ψ1, 
ϑ1, and ϕ1.  It cannot be done based only on the 
geometry of the problem.  The approach, which is based 
on the analysis of the analytical equation for a beam 
trajectory in the space of variables r and y with regard 
for the first integrals of the partial differential operator 
of transfer,1,2,44$47 proves to be universal. 

Calculating a single beam sn = (ϑi, ϕj) at the 
point rm = (rk, ψl) reduces to the following algorithm. 

1. The point, where the beam sn enters a cell, is 
calculated from the given values of rk, ψl, ϑi, and ϕj 
and the coordinates r′, ψ′, ϑ′, and ϕ′ of the entrance 
point. 

2. Values of Φ(r′, ψ′, ϑ′, ϕ′) and E(r′, ψ′, ϑ′, ϕ′) 
are calculated by interpolation between neighboring 
values at the nodes of the difference network. 

3. Integrals are calculated by the quadrature 
method with an adaptive step Δξ, which takes into 

account, in particular, the structures of the coefficients 
σtot(r, ψ). 

The accuracy of quadrature equations used, when 
calculating the values of the source function B(rm, sn), 
worsens at strong anisotropy of scattering.  This effect 
may result in a divergence of iterations due to 
exceeding the unity norm of the operator Ŝ given by 
Eq. (3).  In such situations, the approach involving a 
separation of strongly elongated part of the scattering 
phase function in the form of δ-function is used,43 and 
the sequence of calculations differs from the ordinary 
iterations.  To take into account the selective 
absorption in the multiple-scattering approximation, 
the method of subgroups with exponential 
approximation of the transmission function has been 
developed.35 
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