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Transformation of the centrifugal distortion Hamiltonian describing a random 

pair resonance in non-rigid X2Y molecules to the form having the least number of 

diagonals in the basis of rotational wavefunctions is considered. An influence of a 

large-amplitude oscillation upon such transformation is analyzed. The 

transformation is shown to change significantly the form of the initial Hamiltonian 

and to be diverging in some cases. 
 

1. INTRODUCTION 
 

Effective centrifugal distortion Hamiltonians H are 
widely used in analysis of rovibrational molecular 
spectra.  Such Hamiltonians are derived using different 
versions of the perturbation theory, which give 
different forms of H. For an isolated vibrational state, 
the Hamiltonian H is purely rotational. It can be 
written as a series in operators of angular momentum 
for semi-rigid molecules. It is shown1,2

 that applying the 
method of contact transformations to such Hamiltonian 
for an asymmetric top molecule, one can transform it to 
the reduced form Hred.  The reduced Hamiltonian 
contains only the parameters, which can be 
unambiguously found from the experiment.  What's 
more, in the basis of rotational symmetric top 
wavefunctions |J, K> this Hamiltonian has matrix 
elements <J, K | Hred | J, K + ΔK> only with 
ΔK = 0, ±2.  

For non-rigid molecules of the X2Y type having a 
large-amplitude oscillation this procedure has some 
peculiarities.  They are in the fact that starting from 
some rotational quantum number Jred the behavior of 
matrix elements <J, K | Hred | J, K + ΔK> (with 
ΔK = 0, ±2) cannot be described by functions of only 
one class (for example, using only exponential or linear 
fractional functions).  In Ref. 3 the values of the 
rotational quantum numbers Jred for the ground and 
(010) vibrational states of m2n  molecule were found 
from the processing of the experimental data.  For the 
ground vibrational state of m2n , the non-reduced 
rotational Hamiltonian H, having matrix elements 
<J, K | H | J, K + ΔK> with ΔK = 0, ±2, ±4.... in the 
basis of rotational wavefunctions |J, K>, is shown to be 
preferable starting from J ≈ 25. 

Reduction of the centrifugal distortion Hamiltonian 

H for the case of pair resonance interactions between the 
states (V) ≡ 1 and (V′) ≡ 2 in semi-rigid asymmetric 

top molecules is considered in Refs. 4 and 5. The large-
amplitude oscillation introduces some peculiarities into 
the reduction procedure.  The aim of this paper is to 
take them into account (they are partially considered in 

Ref. 6).  These peculiarities are connected with, first, 
divergence of polynomial representations of the 

rotational operators <n | H | n> (n = 1, 2) and, second, 
with abnormally fast change of the series of 
spectroscopic parameters entering into H. 

 

2. PAIR RESONANCE. GENERAL RELATIONS 

 
For the case of interaction between two rotational 

energy levels belonging to two different vibrational states 
(V) ≡ 1 and (V′) ≡ 2, the effective centrifugal distortion 
Hamiltonian  H  is  written  as  a  2D operator matrix4,5 

H = 
⎣
⎢
⎡

⎦
⎥
⎤H11 H12

H21 H22

 . (1) 

Here (V) ≡ (v1 v2 v3), vi are the vibrational quantum 

numbers (i = 1, 2, 3); H21 = H +
12 ("+" is for the 

Hermitian conjugation).  The matrix (1) is written in 

the basis | V>, |V′>; every Hnm (n, m = 1, 2) is a 
rotational operator. In this work the principal attention 
is paid to the interaction operators H12, therefore the 
diagonal (in the basis of vibrational wavefunctions) 
operators Hnn are from the outset  taken in the reduced 

form 

Hnn = F(n)(Jz) + {J2
+ χ

(n)(Jz + 1) + χ(n)(Jz + 1) J2
$}, 

 (2) 

where F(n)(Jz) and χ(n)(Jz+1) are the generating 
functions for the standard representation of the 
operators Hnn (see, for example, Ref. 7; the effect of 
contact transformations upon the form of the rotational 

Hamiltonian H(n) = Hnn for an isolated vibrational 
state will be considered separately).  The transformed 

Hamiltonian H 
∼
 also has the form of 2D matrix 

H 
∼
 = eiS H e$iS = H + [iS, H] + ... = 

⎣
⎢
⎡

⎦
⎥
⎤H 

∼
11 H 

∼
12

H 
∼

21 H 
∼

22

 , (3) 

where [iS, H] is the commutator; S is the 
transformation generator, 



V.I. Starikov Vol. 12,  No. 2 /February  1999/ Atmos. Oceanic Opt.  
 

119

S = 
⎣
⎢
⎡

⎦
⎥
⎤S11 S12

S21 S22

 , (4) 

and S21 = S +
12.  The transformed operators meet the 

following relations: 

H 
∼

nn = H ′
nn + i (Snm Hmn $ Hnm Smn) + ..., m ≠ n, 

H 
∼

12 = H12 + i (S12 H22 $ H11 S12) + ... , (5a) 

where H ′
nn = Hnn + i [Snn, Hnn]. Excitation of the large-

amplitude oscillation is expressed as a change of the 
bending vibrational quantum number v2; it leads to a 

great change of the functions F(n) and χ(n). With 
allowance  made  for this fact, Eq. (5a) takes the form 

H 
∼

12 = H12 + [i S12, H
(+)] + {i S12, H

($)} + ... . (5b) 

The braces here are used for anticommutator, and 

H(±) = F(±)(Jz) + {J2
+ χ

(±)(Jz + 1) + χ(±)(Jz + 1) J2
$}, (6) 

where 

F(±) = {F(1) ± F(2)}/2; χ(±) = {χ(1) ± χ(2)}/2. (7) 
For further consideration, we should estimate the 

orders of smallness of different functions entering into 
the above relations.  Toward this end, we can use the 

standard smallness parameter λ = (B
$
/ω$)1/2 (B

$
 is the 

mean value of the rotational constant, ω$ is the mean 
frequency of harmonic oscillation) accepted in the 
molecular spectroscopy.8 According to such a definition 
of the parameter λ, the energy of harmonic oscillations in 
a molecule, as well as the energy of the large-amplitude 
oscillation and the rotation energy (in the rigid top 
approximation up to J ≈ 10), has zero order of 
smallness.  The order of smallness of a function can be 
estimated from the ratio of a matrix element of this 
function in the basis of vibrational and rotational 
wavefunctions (if known) to the energy of harmonic 
oscillations. If the matrix element is unknown, then the 
order of function can be estimated by the value of the 
first coefficient in the Taylor series expansion of this 

function. For example, F(n)(K) = 

= <J, K | F(n)(Jz) | J, K > = En + A(n)K2
 $ Δ(n)

K  K4 + …, 

χ(n)(K  + 1)  =  (B(n) $ C(n))/4 $ δ(n)
K  (K + 1)2 + …, 

here En is the vibrational band center; A(n), B(n), and 

C(n) are the rotational constants; Δ(n)
K  and δ(n)

K  … are 
the centrifugal distortion constants, which are usually 
known. Using the values of these constants, for 
example, for m2n  molecule,9,10 we can find that 

F(n)
 ∼ λ0 and χ(n)(K + 1) ∼ λ3 for small n and up to 

K ∼ 10. Figure 1 demonstrates the calculated behavior 

of the function 2F($)(K) = F(020)(K) $ F(100)(K). The 

matrix elements F(n)(K) (n = 1 ≡ (100), n = 2 ≡ (020)) 
were determined from the processing of the experimental 
data for the first triad of interacting states (from Ref. 11, 

the form of the functions F(n) has been also determined 
there). It is clearly seen from Fig. 1 that at low values  

of K F($)(K) ∼ λ (determined by purely vibrational 

difference), at K ≈ 10 F($)(K) ≈ 0 (random resonance), 

and at K from 10 to 20 F($)(K) is again of the order of 

λ.  At K > 20, according to the asymptotics, F($)(K) 
approaches the energy of harmonic oscillations, that is 

F($)(K) ∼ λ0. 
 

 

 

FIG. 1. Behavior of the function 2F($)(K) = F(020) $ 

$ F(100) at J = 10 (■), 15 (�), and 20 (▲) for the H2O 
molecule (from the results of experimental data 
processing for the first triad of interacting states11). 

 

3. ANHARMONIC RESONANCES 

 
According to the symmetry properties, the operator 

H12 describing interaction between the vibrational 
states of the same type of symmetry in X2Y molecules 
can be presented as 

H12 = Ψ0(Jz) + {J2
+ Ψ

(+)
2 (Jz + 1) + Ψ($)

2  (Jz + 1) J2
$} + 

+ {J4
+ Ψ

(+)
4 (Jz + 2) + Ψ($)

4 (Jz + 2) J4
$} + ... , (8) 

where Ψ0(Jz), Ψ(±)
k (Jz + k), k = 1, 2, are some 

functions of the operators J2, Jz (J is the total angular 

momentum operator).  The functions Ψ(±)
2k (Jz + k), 

k = 1, 2, can be presented in the form: 

Ψ(±)
2k (Jz + k) = Ψ(e)

2k (Jz + k) ± Ψ(o)
2k (Jz + k), (9) 

in which the superscripts � and % denote even or odd 
character of a function with respect to its argument. 
Most important among anharmonic resonances are the 
Fermi resonances between the vibrational states 

(V) = (v1 v2 v3) and (V′) = (v1 $ 1 v2 + 2 v3) with 
the different quantum number v2.  In standard 
approximation for semi-rigid molecules12: 

Ψ0(Jz) = 1/2 [v1 (v2 + 1) (v2 + 2)/2]1/2 × 

× [FVV′

0  + FVV′

K  J2
z + FVV′

J  J2 + ...], (10) 

where FVV′

0 , FVV′

K , and FVV′

J  are the resonance 

parameters. For the m2n  molecule FVV′

0  ≈ 100 cm$1
 

(Ref. 12), therefore we can believe that the operator 

H12 ∼ λ. For J ∼ λ$1 the function Ψ(±)
2k (K) can be 

estimated as Ψ(±)
2k (K) ∼ λ2k+2. According to the 

symmetry properties, the operators S12 from Eq. (5a) can 

be written as 
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iS12 = g0(Jz) + {J2
+ g

(+)
2 (Jz + 1) + g($)

2 (Jz + 1) J2
$} + 

+ {J4
+ g

(+)
4 (Jz + 2) + g($)

4 (Jz + 2) J4
$} + ... , (11) 

where g(±)
2k  = g(e)

2k  ± g(o)
2k  (k = 1, 2), and g(e)

2k  and g(o)
2k  

are even and odd functions of their arguments.  The 
operator S12 is of the order of λ (what is necessary for  
the contact transformations convergence), consequently, 

for J ∼ λ$1
 g0(Jz) ∼ λ, g2 (Jz + 1) ∼ λ3, ... that is 

g2k (Jz + k) ∼ λ1+2k. The substitution of Eqs. (2) and 
(11) into Eq. (5a) gives the following expressions for 

the transformed operators H 
∼

nm: 

H 
∼

11 = H ′
11 + ΔHF, H 

∼
22 = H ′

22 $ ΔHF, (12) 

H 
∼

12 = Ψ
∼

0(Jz) + {J2
+ Ψ
∼ (+)

2 (Jz + 1) + Ψ
∼ ($)

2 (Jz + 1) J2
$} + 

+ {J4
+ Ψ
∼ (+)

4 (Jz + 2) + Ψ
∼ ($)

4 (Jz + 2) J4
$} + ... . (13) 

Here 

ΔHF = J2
+ Δχ(Jz + 1) + Δχ(Jz + 1) J2

$}; (14) 

Δχ(Jz + 1) = [g0(Jz + 2) + g0(Jz)] Ψ
e
2(Jz + 1) + 

+ [g0(Jz) $ g0(Jz + 2)] Ψo
2(Jz + 1). (15) 

The transformed functions Ψ
∼

2k(Jz + k) are defined 
by the relations: 

Ψ
∼

0(Jz) = Ψ0(Jz) + 2g0(Jz) F
($)(Jz) , (16=) 

Ψ
∼ e

2(x) = Ψe
2(x) + go

2(x)ΔF(+)(0,2) + ge
2(x)

 

ΔF($)(2,0) , (16b) 

Ψ
∼ o

2(x) = Ψo
2(x) + ge

2(x)ΔF(+)(0,2) + go
2(x)

 

ΔF($)(2,0)  + 

+ χ(x) [g0(x + 1) $ g0(x $ 1)]; (16c) 

Ψ
∼ σ

4(y) = Ψ
σ

4(y) + g
σ
′

2(y)ΔF(+)(0,4) + g
σ

4(y)
 

ΔF($)(4,0)  + 

+ χ(x) g
σ
′

2(x + 2) $ χ(x + 2) g
σ
′

2(x). (16d) 
In these expressions σ, σ′ = e or o (σ ≠ σ′), x = Jz + 1,

y = x + 1, χ = χ(+), and ΔF(±)(k, r) ≡ ΔF(±)(Jz + k, Jz + r) = 

= F(±)(Jz + k) $ F(±)(Jz + r).  

Besides, the terms of the same order are left in these 
expressions (apart from the underlined ones). The 
order of the underlined terms significantly depends on 
the rotational quantum number K. Let us consider 
the conditions, under which some parameters can be 

removed from the interaction operator H 
∼

12 due to 
proper choice of the functions g J kk z2 ( )+  and 

transformation of the operator to the reduced form 

Hred
12 . Let us start from the approximation, in which 

the interaction operator H12 in Eq. (8) includes only 

the functions Ψ0(Jz) and Ψ
∼ (±)

2 (Jz + 1), and the 
transformation generator S includes only the function 
g0(Jz). There are two equations (16a) and (16c) for 
determination of this function. The function g0(Jz) 

cannot be determined from the condition Ψ
∼

0(Jz) = 0, 

that is g0(Jz) = $ Ψ0(Jz)/(2F($)(Jz)), because at some 
values Kr of the rotational quantum number K the 

function F($)(Kr) ≈ 0.  The function g0(Jz) can be 

found from the condition Ψ
∼ o

2(Jz) = 0 (Eq. (16c), where 

ge
2 = go

2 = 0), which leads to the following equation: 

$ Ψ
∼ o

2(x) = χ(x) [g0(x + 1) $ g0(x $ 1)]. (17) 

This equation is the difference equation for the discrete 
variable x.  If the difference operator Δ is defined as 

Δg0(x) = {g0(x + 1) $ g0(x $ 1)}/2, (18) 

then Eq. (17) takes the form 

Δg0(x) = $ Ψo
2(x)/[2χ(x)]. (19) 

Let us now pass on to the continuous variable x. 
Then the difference equation (19) for the discrete 
variable will be transformed into the differential 

equation g ′0 = $ Ψo
2(x)/[2χ(x)] for the continuous 

variable (prime denotes differentiation with respect 
to x), which has the solution 

g0(x) = $ 1/2 ⌡⌠ Ψo
2(x) dx/χ(x) + c, (20) 

where “ is the integration constant. Thus, in the considered 

approximation,  the  reduced  operator  Hred
12   has the 

form 

Hred
12  = Ψ

∼
0(Jz) + {J2

+ Ψ
∼ e

2(Jz + 1) + Ψ
∼ e

2(Jz + 1) J2
$}, (21) 

in which the functions Ψ
∼

0(Jz) and Ψ
∼ e

2(Jz + 1) are 
determined by Eqs.  (16a), (16b), and (20) (in this 

approximation Ψ
∼ e

2(Jz + 1) = Ψe
2(Jz + 1); the operator 

Hred
12  is referred to as a reduced one by analogy with the 

semi-rigid model of a molecule).  In the particular case 

of the Taylor expansion, the function Ψo
2(x) = f12 x + ... 

(and similarly for the function χ(x)) 

g0(x) = $f12/4 ⌡⌠ dt/[C0 $ δK t + 

+ hK t2 + lK t3 + ...] + c, (22) 

where t = x2; C0 = (B $ C)/4, and B, C, δK, ... are 
the rotational and centrifugal constants averaged over 
two vibrational states. The form of the function g0(x) 
is completely determined by roots of the equation 

χ(x) = 0. In the particular case, when centrifugal 
effects in a molecule are negligible, that is when 
χ(x) = C0 (in Eq. (22) we should take 

δK = hK = lK = ... = 0), g0(x) = c $ f12 x
2/(4C0) (i.e. 

the function g0(x) has the polynomial form).  In the 
approximation, when δK ≠ 0, hK = lK = ... = 0, 

g0(x) = f12/[4 δK] ln ⎜C0 $ δK x2 ⎜+ c. (23) 

In the approximation, when δK ≠ 0, hK ≠ 0, 
lK = ... = 0, 
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g0(x) = $ f12/(2 D) arctan [(2hK x2
 $ δK)/ D] + c,  

 (24) 

where D = 4C0 hK $ δ2
K (for D > 0).  These expressions 

demonstrate that if centrifugal distortion in a molecule 
cannot be neglected, then the function g0(x) and, 

consequently, the function Ψ
∼

0(Jz) from the operator 

Hred
12  have a non-polynomial form, even if the initial 

functions Ψ0(Jz) and Ψo
2(x) were polynomial. 

The next functions g2(x) from the expansion (11) 
in some cases can be found from the condition  

Ψ
∼ σ

4(x + 1) = 0, which significantly simplifies the form 
of the interaction operator.  With terms containing the 

functions g
σ

4(y) (σ = e, o) omitted in Eq. (16d), the 
following difference equation 

Δg
σ

2(x) χ(x) $ Δχ(x) g
σ

2(x) = $ Ψ
σ
′

4(x + 1)/2, σ ≠ σ′, (25) 

can be obtained.  In this equation, the difference operator 

Δ for the functions {g
σ

2(x), χ(x)} ≡ ϕ(x) is introduced by 
the expression 2Δϕ(x) = ϕ(x + 2) $ ϕ(x). The 
corresponding differential equation 

[g
σ

2(x)]′ $ χ′(x)/χ(x) g
σ

2(x) = $ Ψ 

σ
′

4(x + 1)/[2 χ(x)] 

has the solution 

g
σ

2(x) = {$ 1/2 ⌡⌠ Ψ 

σ
′

4(x + 1)/χ2(x) + c} χ(x) (26) 

provided that χ(x) ≠ 0 and the functions χ′(x) and  

Ψ
σ

4(x + 1) are bounded. The function g0(x) is determined 

from the condition Ψ
∼ o

2(Jz) = 0 as before; it has the form 

g0(x) = $ 1/2 ⌡⌠ [Ψo
2(x) + ge

2(x)ΔF(+)(x $ 1, x + 1) + 

+ g 

o
2(x)ΔF($)(x + 1, x $ 1)] dx/χ(x) + c. (27) 

The reduced interaction operator Hred
12  is again reduced to 

the form (21). In the basis of rotational wavefunctions 

| J, K> it has the matrix elements <J, K | Hred
12

 | J, K + ΔK> only with ΔK = 0, ±2.  The more general 

solution for the functions g
σ

2(x), following from the 

requirement Ψ
∼ σ

4(x + 1) = 0, can be formally written, 
according to Eq. (16d), in the form 

g
σ

2(x) = {$ 1/2 ⌡⌠ ′Ψ 

σ
′

4(x + 1)dx/χ2(x) + c} χ(x), (28) 

in which 

′Ψ 

σ

4(y) = Ψ 

σ

4(y) + g 

σ
′

4(y) ΔF 

 (+) (0,4) + 

+ g 

σ

4(y) ΔF($) (4,0) (y = x + 1). 

The functions Ψ 

σ

4(y) are of the order of λ6; g 

σ

4(y) ∼ λ5; 

ΔF(+) ∼ λ; and the function ΔF($), as was noted above, 
is of the order of λ for small values of the quantum 

number K; ΔF($)(Kr) ≈ 0 for K ≈ Kr and for some 

highly excited rotational states ΔF($) ∼ λ0.  In the 

latter case, the term containing the operator ΔF($) is an 
order of magnitude greater than all other terms.  So it 
should be omitted in Eq. (28), otherwise the 

convergence of contact transformations breaks down.  
The terms underlined in Eqs. (16) cannot be removed 
by unitary transformations, and therefore the reduced 

interaction operator Hred
12  takes the form 

Hred
12  = Ψ

∼
0(Jz) + {J2

+ Ψ
∼ e

2(Jz + 1) + 

+ Ψ
∼ e

2(Jz + 1) J2
$} + ΔHred

12 . (29) 

The functions Ψ
∼

0(Jz) and Ψ
∼ e

2(Jz + 1) are 
determined by Eqs. (16a) and (16b), while the 

operator ΔHred
12  (appearing for those rotational states, 

for which ΔF($) is comparable with the energy of 
harmonic oscillations) has the form 

ΔHred
12  = {J2

+ ΔΨ
∼ o

2(Jz + 1) $ ΔΨ
∼ o

2(Jz + 1) J2
$} + 

+ {J4
+ ΔΨ

∼ e
2(Jz + 2) + ΔΨ

∼ e
2(Jz + 2) J4

$} + ... , (30) 

where 

ΔΨ
∼ o

2(Jz + 1) = ΔF 

($)(2,0) g 

o
2(Jz + 1); 

ΔΨ
∼ e

2(Jz + 2) = ΔF 

($)(4,0) g 

e
2(Jz + 2). (31) 

In this case, the interaction operator Hred
12  in the basis of 

rotational wavefunctions | J, K> has the matrix elements 

<J, K | Hred
12  | J, K + ΔK> with ΔK = 0, ±2, ±4, ... . 

 
4. CORIOLIS INTERACTION 

 
The operator H12 describing the interaction 

between vibrational states of different types of 
symmetry in X2Y molecules, according to the symmetry 
properties, can be written in the form 

H12 = {J+ C 

(+)
1 (2 Jz + 1) $ C 

($)
1 (2 Jz + 1) J$} + 

+ {J 

3
+ C 

(+)
3 (2Jz + 3) $ C 

($)
3 (2Jz + 3) J 

3
$} +... , (32) 

where C2k+1(2Jz + 2k + 1) (k = 0, 1) are some 

functions of the operators J
2 and Jz.  They can be 

presented as C(±)
2k+1 = Ce

2k+1 ± C
o
2k+1, where the 

superscripts � and % denote even or odd character of the 
function with respect to its argument.  In semi-rigid 
molecules, for interacting states (V) = (v1 v2 v3) and 

(V′) = (v1 $ 1 v2 v3 + 1) (with the same v2) 

C 

e
1 (2Jz + 1) = g

VV′

/2 C 

VV′

01  + ... ,  

C 

o
1 (2Jz + 1) = g

VV′

/2 C 

VV′

11  (2Jz + 1) + ... , (33) 

where g
VV′

 = [v1 (v3 + 1)]1/2/2.  This is so-called 

Coriolis resonance of the first type.  The Coriolis 
resonance of the second type involves vibrational states 

(V) = (v1 v2 v3) and (V′) = (v1 v2 $ 2 v3 + 1) with 
different values of the quantum number v2.  In the 
standard approximation, Eqs. (33) are used for them, 

where g
VV′

 = 1/2 [(v2 (v2 $ 1) (v3 + 1)/2]1/2. For the  
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m2n  molecule12
 ⎪CVV′

01 ⎪ ∼ 2 cm$1, ⎪CVV′

11 ⎪ ∼ 0.3 cm$1.  

Consequently, one can think that for J ∼ λ$1  

C(±)
1 (2Jz + 1) ∼ λ3 and C(±)

2k+1(2Jz + 1) ∼ λ3+2k. 

According to the symmetry properties, the operator 
S12 from Eq. (4) can be written in the form 

iS12 = {J+ θ
(+)
1 (2 Jz + 1) $ θ($)

1 (2 Jz + 1) J$} + 

+ {J3
+ θ

(+)
3 (2Jz + 3) $ θ($)

3 (2Jz + 3) J3
$} +... , (34) 

where θ(±)
2k+1 = θe

2k+1 ± θ
o
2k+1 and superscripts � and % are 

again for the even and odd character of the function 
with respect to its argument. The operator S12 is of the 

order of λ and, consequently, for J ∼ λ$1 θ(±)
2k+1 ∼ λ2+2k.  

Substitution of Eq. (34) into Eqs. (5a) gives the 
following expressions for the transformed operators  

H 
∼

nm: 

H 
∼

11 = H ′
11 + ΔHC,   H 

∼
22 = H ′

22 $ ΔHC, (35) 

H 
∼

12 = H12 + {J+ C 
∼(+)

1 (y) $ C 
∼($)

1 (y) J$} + 

+ {J3
+ C 

∼(+)
3 (z) $ C 

∼($)
3 (z) J3

$} + ... . (36) 

Here 

ΔHC = ΔFC + {J2
+ Δχ(x) + Δχ(x) J2

$}; (37) 

ΔFC = 2 (J2 $ J2
z) δF

(+) $ 2Jz δF
($); (38) 

$ Δχ(x) = θ(+)
1 (z) C($)

1 (y) + θ($)
1 (y) C(+)

1 (z); (39) 

δF(±) = θ($)
1 (y) C($)

1 (y) ± θ(+)
1 (y $ 2) C(+)

1 (y $ 2), 

and x = Jz + 1, y = 2Jz + 1, z = 2Jz + 3. For the 

functions C 
∼

 

e
1, C 

∼
 

o
1, and C 

∼
 

σ

3 (σ = e, o) we have the 
following expressions: 

C 
∼

 

e
1(y) = C 

e
1(y) + θ 

o
1(y) ΔF(+) (0,1) + 

+ θ 

e
1(y) ΔF($) (0,1)  + ΔC 

e
1(y); (40) 

C 
∼

 

o
1(y) = C 

o
1(y) + θ 

e
1(y) ΔF(+) (0,1) + 

+ θ 

o
1(y) ΔF($) (0,1)  $ ΔC 

o
1(y); (41) 

C 
∼

 

σ

3(z) = C 

σ

3(z) + θ 

σ
′

1(z + 2) χ(x) $ χ(x + 1) θ 

σ
′

1(y) + 

+ θ 

σ
′

3(z) ΔF(+) (0,3) + θ 

σ

3(z) ΔF($) (0,3) . (42) 

In Eq. (40) 

ΔC 

σ

1(y) = θ 

σ
′

1(y + 2) χ(x) φ(x) $ 

$ θ 

σ
′

1(y $ 2) χ(x $ 1) φ(x $ 2), (43) 

and φ(Jz $ 1) = J+ J$ = J2 $ Jz (Jz $ 1). Let us 
consider the conditions, under which the interaction 

operator 

~

H12  can be reduced to a simpler form by proper 

choice of the functions θ entering into the 
transformation generator. In the first approximation, 

two functions C 
∼

 

e
1(y) and C 

∼
 

o
1(y) are related by the 

function θ 

e
1(y).  The analysis of the first two equations 

(40) and (41), in which θ 

o
1 = θ 

e
3 = θ 

o
3 = 0, depends on 

the order of the operator ΔF($) and, consequently, on 
the type of resonance interaction.  For the Coriolis 
resonance of the first type, the bending quantum 
number v2 is the same for both interacting states (V) 

and (V′).  In this case, ΔF($) ∼ λ for any K.  For the 
Coriolis resonance of the second type, the quantum 

number v2 is different for the states (V) and (V′).  The 

order of the operator ΔF($) is determined by the value 
of the quantum number K, arising in the processing.  
Figures 2 and 3 show the behavior of the matrix 

elements ΔF(n)(K) for three vibrational states of the m2n  
molecule (from the results of Ref. 11),  
which determine the behavior of the function  

ΔF($)(K) = {F(V)(K) $ F(V′)(K)}/2 (for J = 15). 
 

 

 

FIG. 2. Behavior of the functions F(100)(K) and 

F(001)(K) (for J = 15) involved into the Coriolis 
resonance of the first type in the H2O molecule 
(from the results of Ref. 11). 
 

 

 

FIG. 3. Behavior of the functions F(020)(K) and 

F(001)(K) (for J = 15) involved in the Coriolis 
resonance of the second type in the H2O molecule 
(from the results of Ref. 11). 
 

It is seen from Fig. 3 that for the Coriolis 
resonance of the second type the behavior of the 

function ΔF($)(K) is similar to that of the function 

ΔF($)(K) for the Fermi resonance (see Fig. 1); and in 
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asymptotics ΔF($)(K) can have zero order of the 
parameter of smallness.  For the Coriolis resonance of 

the first type, the function θ 

e
1(y) can be found from the 

condition C 
∼

 

e
1(y) = 0, that is 

θ 

e
1(y) = $ q 

e
1(y)/ΔF($)(0,1). (44) 

The reduced interaction operator takes the form: 

H 
∼

 

red
12  = {J+ C 

∼
 

o
1 (2Jz + 1) + C 

∼
 

o
1 (2Jz + 1) J$}. (45) 

For the Coriolis resonance of the second type, the 

function θ 

e
1(y) cannot be found from the condition  

C 
∼

 

e
1(y) = 0, that is by Eq. (44), because for some 

K = Kr, ΔF($)(0,1) ≈ 0. This function can be determined 

from the condition C 
∼

 

o
1(y). The approximate analytical 

expression 

θ 

e
1(y) = $ C 

∼
 

o
1(y)/[ΔF(+)(0,1) + 2C0 y] (46) 

for this function can be derived, if the approximate 

expression ΔC 
∼

 

o
1(y) = 2 θ 

e
1(y) C0 y is used in Eq. (43). 

The reduced interaction operator in this case has the form 

H 
∼

 

red
12  = {J+ C 

∼
 

e
1 (2Jz + 1) $ C 

∼
 

e
1 (2Jz + 1) J$}. (47) 

The following two functions θ 

o
1(y) and θ 

e
3(y) 

(entering into the transformation generator S12) for the 
Coriolis resonance of the first type can be found from 

the conditions C 
∼

 

σ

3(z) = 0 (σ = e, o), which result in 
the equations 

$ C 

e
3(z) = θ 

o
1(z + 2) χ(x) $ χ(x + 1) θ 

o
1(y) + 

+ θ 

e
3(z) ΔF($) (0,3) ; (48) 

$ C 

o
3(z) = θ 

e
1(z + 2) χ(x) $ χ(x + 1) θ 

e
1(y) + 

+ θ 

e
3(z) ΔF(+) (0,3). (49) 

For the presented difference equations, the 
corresponding differential equations can be found, from 

which the solutions for θ 

o
1(y) and θ 

e
3(y) can be 

determined. The analytical expressions for these 
solutions are not presented here; it is important that at 
χ(x) ≠ 0 these solutions exist. Thus, for the Coriolis 

resonance of the first type the reduced operator Hred
12  

can be again transformed into the form (45), which has 

the matrix elements <J, K | Hred
12  | J, K + ΔK> with 

ΔK = ±1 in the basis of rotational wavefunctions 
| J, K>. 

For the Coriolis resonance of the second type, this 
procedure is valid for such quantum numbers K, for 

which ΔF($)(K) ∼ λ (or ΔF($)(K) ≈ 0).  For the values 

of K, at which ΔF($)(K) ∼ λ0, the terms  
 

underlined in Eqs. (40) $ (42) and (48) cannot be 
removed, because this breaks down the convergence of 
the contact transformations.  In this case, the reduced 

operator Hred
12  takes the form 

H 
∼

 

red
12  = {J+ C 

∼
 

e
1 (2Jz + 1) $ C 

∼
 

e
1 (2Jz + 1) J$} + ΔHred

12 , (50) 

in which the operator ΔHred
12  should be taken into 

account for those rotational quantum numbers, for 

which ΔF($)(K) ∼ λ0.  It has the form 

ΔHred
12  = {J+ ΔC 

∼
 

o
1 (2Jz + 1) + ΔC 

∼
 

o
1 (2Jz + 1) J$} + 

+ {J 

3
+ ΔC 

e
3 (2Jz + 3) $ ΔC 

e
3 (2Jz + 3) J 

3
$} + ... , (51) 

where 

ΔC 
∼

 

o
1 (2Jz + 1) = θ 

o
1 (2Jz + 1) ΔF($) (Jz, Jz + 1), 

ΔC 

e
3 (2Jz + 3) = θ 

e
3 (2Jz + 3) ΔF($) (Jz, Jz + 3). (52) 

In the basis of rotational wavefunctions | J, K> of a 

symmetric top, the operator Hred
12  has the matrix elements 

<J, K | Hred
12  | J, K + ΔK> with ΔK = ±1, ±3. The matrix 

elements with ΔK = ±3 should be taken into account in 
analysis  of  resonance  interactions in high-excited states. 

 

5. DISCUSSION 

 

The large-amplitude oscillation in non-rigid 

molecules of the X2Y type introduces some peculiarities 
in the procedure of Hamiltonian transformation to the 
reduced form, having the least number of rotational 
diagonals in the basis of symmetric top rotational 
wavefunctions. For the case of resonance interactions 
(particularly, when the vibrational states with different 
values of the bending quantum number v2 are involved in 

the resonance), this oscillation results in the following. 
The matrix elements of the interaction operator (starting 
from some value Jkr of the rotational quantum number 
J) cannot generally be described by functions of the 

same class (for example, only polynomial functions with 

respect to rotational quantum numbers). This means 
that the procedure of the Hamiltonian transformation 
to the reduced form is ill-defined (diverging) starting 
from Jkr. In this case, the matrix elements with 
ΔK = ±4, ... for Fermi resonances and ΔK = ±3, ... for 
Coriolis resonances should be included in consideration. 
The values of the quantum number Jkr, starting from 
which these effects manifest themselves, can be 

determined from the processing of the experimental data 

for a particular molecule. 
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