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Absorption power in a bounded internal part of a particle is described by 
semianalytical expressions obtained on the base of two different approaches 
(surface Poynting integral and volume integral) within the frameworks of Mie 
theory applied to a homogeneous sphere. This enables one to estimate heat release 
from œhotB points. The expressions are simplified with the allowance for 
contribution from only one resonant mode. The developed algorithms and programs 
are efficient from the computational viewpoint. Illustrative calculations are 
performed for water particles excited at laser wavelengths and for some model 
particles in the presence of morphological absorption resonance. 

 

1. INTRODUCTION 

 
Calculation of absorption power in a bounded part 

V of a spherical particle is very useful in many 
problems of nonlinear optics of disperse media, e.g., in 
studying interaction between high-power 
electromagnetic radiation and isolated aerosol particles 
(especially in the presence of the so-called morphologic 
resonance1) and in estimating  the efficiency of the 
pump energy conversion in microlasers (see, for 
instance, Ref. 2). In its most general formulation the 
problem has no analytical solution. In practice, it is 
reduced to numerical volume integration of the inner 
field intensity. This is difficult to be done at small 
values of the absorption index due to rapidly oscillating 
structure of the field. However, the problem can be 
simplified if one takes into account  the fact that 
practically interesting œhot pointsB are on the sphere’s 
large axis coinciding with the direction of the incident 
wave’s propagation.3 In this case, a rotationally 
symmetric body whose axis coincides with the above-
mentioned direction can be taken as V. 

Let us specify the geometry of the problem. A 
plane monochromatic (exp ($iωt)), linearly polarized 
(the vector E oscillates along the x axis) 
electromagnetic wave with the amplitude E0 falls onto 
a spherical homogeneous particle of the radius R with 
the complex refractive index m = N + iκ (the center of 
the particle coincides with the origin of a Cartesian, x, 
y, z, and spherical, r, θ, φ, coordinate systems) along 
the positive direction of the z axis. The volume V is 
bounded by a cone-shaped surface S3(θ = Θ) and two 
spherical surfaces S1(r = r1) and S2(r = r2). For 
Θ = π/2, π, this reduces to the earlier considered cases 
of a hemisphere4 and a concentric layer.5,6 

2. SURFACE INTEGRAL 

 

According to Poynting’s theorem the absorption 
power inside a volume bounded by a closed surface 
S = S1 + S2 + S3 is equal to 

Wabs = $ 
1
2
 Re ⌡⌠

S

 [ ]E × H*  ⋅ n dS, (1) 

where n is the exterior normal vector to the surface S; 
* is the complex conjugate; (E, H) are the electric and 
magnetic interior fields of the sphere, their components 
have the form7 
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Here γn = in/n(n + 1); ε0, μ0 are electric and magnetic 
constants; ρ = k0 R is the diffraction parameter; 
k0 = 2π/λ is the wave number in the ambient space; 
a = r/R is the relative radial coordinate; πn, τn are 
angular functions7 of the argument μ = cosθ; 
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Xn(a) = cn ψn(mρa) = 
im(2n + 1) Rn(mρa)

ξn(ρ) [Gn(ρ) $ mDn(mρ)]
 ,  

Yn(a) = Xn(a) Dn(mρa), 

Zn(a) = dn ψn(mρa) = 
im(2n + 1) Rn(mρa)

ξn(ρ) [mGn(ρ) $ Dn(mρ)]
 ,  

Vn(a) = Zn(a) Dn(mρa); 

Dn(z) and Gn(z) are the logarithmic derivatives of the 
Riccati-Bessel and Riccati-Hankel functions7 ψn(z), 
ξn(z), respectively; cn, and dn are the amplitude 
coefficients of the interior field of the sphere (in 
contrast to Ref. 7, these include the factor (2n + 1)); 
Rn(mρa) = ψn(mρa)/ψn(mρ). 

Let us deduce the expressions for W. The integral 
(1) for the fluxes through S1,2  equals 

W1,2 = 

a1,2
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where =1,2 = r1,2/R. By substituting the expansions 
(3)$(4) into this expression, integrating over the angle 
φ, combining the terms, and interchanging the 
integration and summation, we come to the expression 
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where 
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For n ≠ l, one can obtain8 
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as for the case n = l, one can use the approach similar to 

that developed in Ref. 9. If one introduces an auxiliary 

indefinite integral Tn(μ)/(2n + 1) = ⌡⌠
 (1 $ μ2) πn

2 dμ, 

it is easy to see that Hnn(μ) = n(n + 1) Tn(μ)/(2n + 1) $ 

$ (1 $ μ2) πn(μ) τn(μ). The following recursion relation 
is valid for the index n for the function Tn 
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with the initial value T1(μ) = μ(3 $ μ2). Therefore, 
using the values T1(1), T1(ν), one can obtain Tn(1) and 
Tn(ν), then mn(1) and mn(ν), and, finally, 
hnn(ν) = Hn(1) $ Hn(ν) according to the recursion. 

Thus, calculation of the integrals W1,2 is reduced 
to calculation of a double series with respect to 
combinations of cylindrical and Legendre functions. For 
a cone-shaped boundary S3, the Poynting integral has 
the form 
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Substituting the components of the fields (2)$(4) 
for θ = Θ into this expression and integrating over the 
angle φ, we obtain 
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Here, in contrast to the integrals W1,2, it is worthless 
changing the order of summation and integration as the 
resulting integrals over quadratic combinations of 
cylindrical functions have no closed analytical 
representations and recursion relations with respect to 
the indices n and l. 

Let us consider the computational aspects of the 
problem. The number of terms in the sums over indices 
n and l that is necessary for convergence was 
determined by the following formula: 

L = min[f LW(ρ), f LW(|m|ρa)], 

where LW(x) = x + 4.05x1/3 + 2 is the estimate of the 
number of terms in the Mie series in accordance with 
Ref. 10, and f is the empirical coefficient which 
exceeds unity in value (our computations of the 
interior field demonstrates that f ≈ 1.2). The functions 
ξn, Gn, and Rn are calculated by the ascending 
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recursion,11 and functions Dn by the descending 
recursion; the initial values DL are calculated by the 
method of continued fractions.12 The expressions (5) 
were integrated by the Gaussian quadrature formulas. 
Numerical experiments demonstrate that double 
precision is required in calculations at κ < 10$5, while 
at κ ≈ 10$8 the computation scheme becomes unstable 
in some ranges of the ρ value. This is not surprising 
because, within the frames of the approach, absorption 
is considered in fact as a difference between the 
radiation fluxes coming into and out of a given volume. 
For very small κ, the difference becomes very small as 
compared with the above-mentioned fluxes what leads 
to instability of the calculations. 

 

3. VOLUME INTEGRAL 

 
In this situation, another one approach appeared to 

be useful. The approach uses volume integral. As 
known, absorption power in a volume V is 

Wabs = 
2πNκ

λ
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Substituting the expansions (2) and (3) into this 
expression, integrating over the angle φ, and factoring 
the double sum outside the integral sign, we obtain, 
after some transformations, that 
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where 
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The function tnl(ν) can be represented analytically 
in the case of n ≠ l because 

⌡⌠ (1 $ μ2) πn πl dμ = 
(1 $ μ2)(τn πl + πn τl)

(n $ l)(n + l + 1)
 , 

and for n = l it can be calculated within the recursion 
for hnn(ν). 

From the computational point of view, the 
expression (7) little differs from Eq. (5). Factoring the 
sums outside the integral sign is also worthless here as 
the  integrals obtained have no analytical  
 

representations. So, like for the  W3 flux in the case of 
the surface Poynting integral, the linear integral over a 
in Eq. (7) is to be taken numerically by the Gaussian 
quadrature. Certainly, this is a significant shortcoming 
of the approach developed here, but calculation of the 
linear integral (7) is, nevertheless, incommensurably 
easier as compared with the initial volume integral (6). 
Practical realization of the developed algorithms 
demonstrates that calculations by the program based on 
the surface integral are preferable at the values of the 
absorption index κ > 10$6 as the program is much 
faster than that based on the volume integral. On the 
other hand, at a very small κ ≈ 10$7 and lower, the 
calculations may be performed only by the volume 
integral; however, relative slowness of this program 
complicates to some extent the calculations at ρ > 150. 

 
4. RESONANCE 

 
According to many papers on studying the 

morphological resonance, the interior field (at least at 
the large axis of a particle coinciding with the direction 
of incident beam propagation and nearby) is determined 
by the resonance mode under resonance conditions. In 
this connection, it is interesting to simplify Eq. (7) 
having in mind that only one resonant mode contributes 
into the Wabs. 

Let us start with the magnetic resonance. Suppose 
that only one amplitude coefficient cn is different from 
zero. Then Eq. (7) contains only the second term 
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we come to the expression 
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Let us turn to the electric resonance (only one 
amplitude coefficient dn differs from zero). Then, taking 
into account the ratio between tnn(ν) and hnn(ν), we 
obtain 
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Here the first integral can be taken analytically as 
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integral is unknown. 

Finally, we obtain 
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It is evident that, to integrate the second term, 
one should apply the numerical quadrature what is not 
difficult here. 

 

5. ILLUSTRATIVE RESULTS FOR WATER 

DROPLETS 
 

To illustrate the possibilities of the proposed semi-
analytical methods of calculation, below we present   
some results for water droplets at laser wavelengths 
λ = 10.6, 2.36, and 0.69 μm. In our opinion, the ratio η 

of the mean relative field intensity b
$

V in a bounded 

volume V to the similar value b
$
 averaged over the 

entire volume of a spherical particle is quite a 
comprehensive measure of absorption in a bounded 
volume of a particle. In fact, this value demonstrates 
how strongly the field intensity increases in a bounded 
volume as compared to the mean field. Relations of the 
value η to other absorption characteristics are rather 
evident. 

Figures 1 and 2 present the value η as a function 
of the spherical angle Θ counted from the forward 
scattering direction, for several values of the diffraction 
parameter. The volume in the shadow hemisphere was 
bounded by a cone-shaped surface (θ = Θ, φ = 0 $ 2π, 
a = a1 $ a2) and two spherical surfaces (a1 = 0.05, 
θ = 0 $ Θ, φ = 0 $ 2π) and (a2 = 1, θ = 0 $ Θ, φ = 0 $
 2π). The value  Θ varied from 0 to 45°. 

In the region of strong absorption (λ = 10.6 μm, 
see Fig. 1), the values η are very small. For ρ = 1, η is 
1.05 and in fact does not depend on the angle Θ what is 
indicative of almost homogeneous distribution of the 
field. However, already at ρ = 2 $ 5, a visible 
maximum appears at Θ = 0. This reflects the 
appearance of maxima on the large axis of a particle in  

 

the shadow hemisphere. At ρ = 10, this maximum 
disappears, and the values η diminish because the major 
part of energy begins to release in the illuminated 
hemisphere. With the further increase in ρ, the values 
of η continue to fall; thus at  ρ ≈ 50, a small maximum 
is formed at Θ = 2°. Perhaps, this indicates toward a 
shift of the field maxima off the large axis of the 
particle. 
 

 
 

FIG. 1. The ratio η as a function of Θ angle  for 
spherical water particles (m = 1.73 + i0.0823) at the 
wavelength λ = 10.6 μm. The figures at the curves are 
the values of the particle  diffraction parameter ρ. 

 

 
 

FIG. 2. The same data as in Fig. 1, but for 
λ = 0.69 μm (a) (m = 1.33 + i3⋅10$8) and λ = 2.36 μm 
(b) (m = 1.274 + i7.6⋅10$4) (see Ref. 13). 

 

For the wavelengths λ = 2.36 and 0.69 μm (see 
Fig. 2), where water absorption is less by several orders 
of magnitude, a qualitatively different picture is 
observed. At small values ρ ≈ 1 $ 2, the ratio η very 
weakly depends on Θ, but, at ρ = 5, a maximum 
appears at Θ = 0°. The values η are much higher than 
those at the wavelength 10.6 μm. A maximum 
appearing at ρ ≈ 20 $ 50 at the angle Θ = 2 $ 3° can be 
caused by a shift of field maxima off the large axis. 

The above-mentioned functions η(Θ) refer to the 
case when no resonance occurs. To illustrate influence of 
the morphological resonance, Fig. 3 presents the 
functions η(Θ) for a model particle with N = 1.40,  
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ρ = 31.789230, what corresponds to the first resonance of 
the amplitude coefficient d39. Calculations have been 
performed for several values of the absorption index κ 
(from 10$8 to 10$3) and for a particle beyond the 
resonance (m = 1.4 + i10$8, ρ = 31.80). If the absorption 
is rather strong (κ ≈ 10$3), the value η only  weakly 
depends on Θ, in the presence of resonance, as well as at 
its absence. But under the resonance conditions and 
decreased κ, a maximum of η appears at Θ = 0. Maximum 
values of η are very high here: ≈ 25 at κ = 10$4 and ≈ 37 
at κ = 10$5 and lower. 
 

 
 

FIG. 3. The ratios η as functions of the angle Θ for 
model spherical particles with the refractive index 
N = 1.4  and diffraction parameter ρ = 31.789230. 
The figures at the curves mean the values of log κ, 
the dashed line is for a particle with m = 1.4 + i⋅10$8 
and ρ = 31.80. 
 

For this model of a resonant particle, the value b
$
 

averaged over the entire sphere is 44 at κ = 10$6. So we  
 

obtain that, at κ ≈ 10$6 $ 10$8, the mean relative 
intensity of the interior field in a narrow cone of 
Θ ≈ 0.5° is ≈ 1600. 
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