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A two-stage procedure for detection of thermal anomalies (such as fires) on 
the territory of some region from satellite data of the AVHRR device is 
considered. At the first stage, the field of thermodynamic temperature of the 
underlying surface is reconstructed using a nonlinear non-parametric regression 
adapted to particular observation conditions found from the coordinated data of 
meteorological services and data of the AVHRR device from onboard the NOAA 
satellite. At the second stage, the reconstructed temperature field is used for 
constructing the Bayes adaptive rule to detect thermal anomalies. The rule is based 
on the principle of the component identification in a mixed distribution and 
approximation of the conditional density functions by the Johnson curves. An 
example of detection of thermal anomalies from satellite video data at the territory 
of the Tomsk Region is presented. 

 

The problem of early detection of fires with 
initially small size is very urgent, especially for hard-
to-reach and sparsely populated regions. In this 
connection, most promising way is to use satellite 
information for early detection of sources of thermal 
anomalies (possible fires). Most suitable for such 
purposes are satellites of the NOAA series, since  
they are most often orbiting over our region and  
they allow monitoring of the Earth’s underlying 
surface. Such satellites carry an AVHRR device,  
which records radio brightness, in the form of images, 
in five spectral regions including thermal ones. 
Unfortunately, low resolution of the AVHRR device 
and comparatively narrow range of radio brightness 
that can be recorded with it does not permit efficient 
solution to the problem of early detection of small- 
size fires. 

In this paper, we consider an approach that is 
based on the methods of predicting non-observed 
parameters (values of thermodynamic temperature) 
from the information contained in indirect 
measurements. In this case, the data observed in the 
five channels of the AVHRR device play the part of 
such indirect measurements. Note that efficiently 
solving the above-stated problem requires highly 
accurate referencing of the scanner pictures to the map 
of a territory surveyed. The referencing of video data 
by use orbital data does not provide a desired accuracy, 
first of all, due to the errors in determination of orbital 
elements and drifts in the orientation angles of a 
satellite. So, the orbital-data-based referencing  can be 
considered only as a preliminary one and, thus, it 

should be corrected using reference points specified by 
an operator. 

As known, self-radiation of an object is a function 
of its temperature, physical properties, and structure 
characteristics of the emitting surface. One may 
consider the spectral power brightness as a 
characteristic informative of incoherent self-radiation of 
a heated body. The power brightness, which can be 
determined by the Planck formula, depends on 
temperature, wavelength, and the factor ελ(T)  
(emissivity). This factor is also called the spectral 
degree of blackness of a radiating surface at a given 
temperature and direction of viewing. For instance, the 
black body has ελ = 1 in the whole wavelength range. 
For a gray body, 0 < ελ < 1 in a certain wavelength 
range. For some types of the underlying surface, the 
values of ελ(T) are known. However, real devices 
record combined radiation brightness distorted by the 
atmosphere. Thus, it is problematic to estimate the 
temperature of the underlying surface from the 
radiation brightness measured under the influence from 
the atmosphere. 

We suppose that images received from a satellite 
are pre-processed: geometrical distortions of the data 
are eliminated; data are referenced to geographical 
coordinates; a fragment of video data corresponding to 
Tomsk Region (TR) and the adjacent territories is œcut 
outB; data of the AVHRR device are corrected and 
calibrated by switching to the albedo values for the 
first and second channels and to thermodynamic 
temperatures in the third, fourth, and fifth channels 
(using inverted Planck formula). 
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Thus, we have a field of 1024 × 1024 five-
dimensional vectors with geographic coordinates for 
every pixel of the image (the field of video data). 
Besides, we have the data of meteorological services on 
the temperature of the underlying surface (this may be 
temperature of soil or of the atmospheric surface layer) 
at some sites with known coordinates, which are spaced 
sufficiently uniformly over the territory. The data of 
meteorological services are given for the time of 
satellite observations. In the ideal case, the temperature 
at reference points for every class (type) of the 
underlying surface (water, field, plowed field, forest, 
etc.) should be known. 

 

RECONSTRUCTION OF THE THERMODYNAMIC 

TEMPERATURE FIELD  

 

The thermodynamic temperature of the underlying 
surface (US) on the field to be predicted is described 

by a random value Y ∈ R1. The data on radiation 
brightness, which form the source of information used 

for prediction, are described by a random vector X ∈ Rk 
where Rk is the 5-dimensional Euclidean space; 

X = (X1, ..., Xk)T, Xi is the radiation brightness 
measured in the ith channel of the AVHRR device, 
i = 1, ..., k, T is the transposition sign. 

The relation between the variable Y to be 
predicted and the vector X is described by the 
regression functional of the following form: 
 

m(x) = E(Y/X = x), (1) 
 

where E( ) is the operator of mathematical expectation, 
E(⏐Y⏐) < ∞. 

If the following probability densities of the 
random variables X and Y exist, then, taking into 
account Eq. (1), we have 
 

y = m(x) = ⌡⌠
R
1

 y 
f (x, y)

f (x) f(y)
 dF(y), (2) 

 

where x ∈ Rk, y ∈ R1, f (x, y) is the joint probability 
density of the random vector X and the random 
variable Y; f (x) is the probability density of the 
random vector X; f (y) is the probability density of the 
random variable Y, and F(y) is the integral 
distribution function of Y. 

Let we have a sample of pairwise independent, 

similarly distributed random variables {(Xi, Yi)}
n
i=1, 

where n is the number of reference temperature values 
taken from meteorological services at the time of 
satellite observations. In Eq. (2), it is natural to use 
non-parametric estimates for unknown distributions 
using sample data.1$3 Let us replace the unknown 
distributions with their non-parametric estimates of the 
kernel type and F(y) with the empirical function 
Fn(y). Then the estimate for the regression equation 
(2) takes the form3 

m̂(x) = ∑
l=1

n

 

Yl ∑
j=1

n

 Kh(Yl

 

$ Yj) Π
i=1

k

 Kh(xi $ Xi
j)

∑
j=1

n

 Π
i=1

k

 Kh(xi $ Xi
j) ∑

i=1

n

 Kh(Yl $ Yi)

 , (3) 

 
where h is the window width (smoothing parameter) 

described by the function Kh(u) = h$1 K(u/h); the 
Epanechnikov kernel1$3 or Gaussian kernel can be 
taken as K(.). 

The experience of using such estimates shows that 
accuracy characteristics of the regression equation  

m̂h(x) depend basically on the scale parameter h, rather 
than the kernel form. Because the parameter h is 
important, it is natural to turn to the vector parameter 

h = (h1, ..., hk)T and to use the modified kernel  

K ′
h(u) = (hi)$1 K(ui/hi), i = 1, ..., k in Eq. (3). This 

brings up new problem on estimating h with the 

allowance for the observations {(Xi, Yi)}
n
i=1. To estimate 

h, let us use the method of moving control. This 
method consists in the following. A modified estimate 

of the regression m̂h,j(Xj) is constructed with the  
jth observation omitted (excluded). The quality 
criterion of h estimate depends on the ability to predict 

a set of values {Yj}
n
j=1 from the sets of subsamples 

{(Xi, Yi)}i≠j: 
 

J(h) = n$1 ∑
j=1

n

 [Yj $ m̂h,j(Xj)]
2 w(Xj), (4) 

 
where w(.) is the weighting function, which may be 
omitted in the simplest cases. It is convenient to solve 
the optimization problem (4) by the search method,4 
using a two-stage estimation procedure for the global 
extremum of the functional (4). The search domain in 

this case is a multidimensional square Π
i=1

k

 [himin, h
i
max], 

where himin and himax are the lower and the upper 
estimated limits of the smoothing parameter, 
respectively. At the first stage, a point with uniform 
distribution is randomly selected in the search domain. 
Then the gradient descent is performed with the use of 
the search adaptation methods.4 For this purpose, the 
quality functional (4) is varied by the smoothing 
parameters in the following way. The increments to the 
functional (4) are calculated: 
 
J+(h, a) = (J(h + ae1), ..., J(h + aek)), 
 
J$(h, a) = (J(h $ ae1), ..., J(h $ aek)), 
 
where k is the number of the parameters h 
corresponding to the number of the components forming 

the vector h = (h1, ..., hk)T; a is the scalar parameter 
determining the value of the search step; 
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ei = 

⎝
⎛

⎠
⎞0, ..., 1

ÆÉÉÈÉÉÇ

i

, ..., 0
T

, i = 1, ..., k are basis vectors of 

the searching directions. The estimated value of the 
gradient is calculated in the following way: 
 

J+(h, a) J$(h, a)/(2a) = ∇
h 

± J(h, a), 

 

where ∇
h 

± denotes gradient. The search algorithm of 

adaptation in the recursion form is as follows: 
 

h[ j] = h[ j $ 1] $ γ [ j] ∇
h 

± J(h[ j $ 1], a[ j]). (5) 
 

Selection of the search step a[.] and the working step 
γ[.] is considered in Ref. 4; and γ[.] < a[.]. 

Once the parameter h in the expression (3) for  

m̂h(x) is found, the regression equation can be used to 
reconstruct the values of Y from observed X all over 
the field of video data. It should be noted that the 
regression model for prediction of non-observed values 

is valid only with statistically homogeneous data, from 
which the dependence is reconstructed, as well as the 
data to be reconstructed. Therefore, it is first necessary 
to analyze  the entire image using a segmentation 
algorithm to separate statistically homogeneous areas 
and exclude the cloud fields. Thus, it is necessary to 
reconstruct the local expression (3) with its own values 
of h from the sample data at every such area. The 
reconstructed function (3) is then used to estimate the 
thermodynamic temperature for every pixel of the 
1024 × 1024 field, including the image of the Tomsk 
Region. Figure 1 shows the sample distribution of the 
thermodynamic temperature at the TR territory. This 
distribution was reconstructed using the data of 
weather reports from 16 reference observation sites. 
Influence of the atmospheric inhomogeneity is taken 
into account in the model (3) by using some measured 
values of the US temperature for such US areas, 
radiation brightness of which has simultaneously been 
recorded with the AVHRR device. 

 

FIG. 1. Fragment of the temperature map of the Tomsk Region. The temperature (in K) is demonstrated by grades 
of the gray color according to the color palette presented to the left. 
 
DECISION RULE FOR DETECTION OF THERMAL 

ANOMALIES 

 
The AVHRR device allows temperature 

measurements only up to 45°C. So, we can have only 
the statistics describing observations in the situation 

with no thermal anomalies (œbackgroundB or œBB 
class). As to the observations in the situation with some 
thermal anomalies (œthermal anomalyB or œTAB class), 
they will be œcut offB at the level of 45°C.  
So, the background distribution should be reconstructed 
carefully and the threshold t of the decision rule  
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should be defined by the level of false alarm  

α = ⌡⌠
t

∞

 f (y) dy, where f(y) is the probability density 

function of the background distribution. Let us  
denote the temperatures obtained at the first stage by 
Yi, i = 1, ..., n and reconstruct their probability 
distribution using the Johnson parametric family5 with 
the chosen approximation SB. 

To construct the decision rule, let us use the 
following expression5 for f(y): 
 

fb(y) = 
η

2π
 

λ
(y $ ε) (λ $ y + ε) × 

 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
1
2
 ⎣
⎡

⎦
⎤γ + η ln ⎝

⎛
⎠
⎞y $ ε

λ $ y + ε  

2 

 , (6) 

 
ε ≤ y ≤ ε + λ,   η > 0,   $ ∞ < γ < ∞, 
 
λ > 0,   $ ∞ < ε < ∞, 
 
where ε (the lower limit of the value), as well as y and 
λ (sample range) can be estimated from observations 

{Yj}
n
j=1, while the shape parameters η and γ are to be 

determined using, for instance, the method of maximum 
likelihood5: 

 

δ̂ = 

⎩
⎨
⎧

⎭
⎬
⎫1

n
 ∑
i=1

n

 τ2(Yi; ε, λ) $ 

⎝
⎜
⎛

⎠
⎟
⎞1

n
 ∑
j=1

n

 τ2(Yj; ε, λ)
 2 $1

, 

 

γ̂ = $ 
⎣
⎢
⎡

⎦
⎥
⎤1

n
 ∑
i=1

n

 τ(Yi; ε, λ)  δ̂, 

 
where τ(y; ε, λ) = ln[(y $ ε)/(λ + ε $ y)]. Using 
Eq. (6) and having fixed the error level α, we can find 
the threshold t of the decision rule for TA detection. 

Another approach to construction of the Bayes 
decision rule for detection of thermal anomalies is based 
on the fact that the histogram of reconstructed 

thermodynamic temperatures f ^ (y) is a mixed 
distribution. It incorporates the temperature 
distribution in the situation with no thermal anomalies 
and that in the situation with some thermal anomalies 
observed at the territory. In this case, it is natural to 
use the approach associated with decomposition of the 
mixed distribution into mixture components each 
having its own weight. Suppose that the state of the 
nature in the situation B is described by the probability 
density function f0(y) and this, in the situation TA, is 
described by the probability density function f1(y) with 
unknown parameters. Then the next problem is to 
reconstruct the parameters of the mixture distributions 

P f0(y) + Q f1(y) from the mixed histogram f ^ (y) of 
the thermodynamic temperature distribution. Here, P 
and Q are a priori probabilities of the states B and TA 

of the nature, respectively, such that P + Q = 1. It 
should be noted that the TR territory always has 
thermal anomalies caused by the presence of about ten 
flares at ten gas deposits with known coordinates. This 
means that the TA class is not empty. 

As f0(y) and f1(y), we have again used the 
distributions from the Johnson SB family. The problem 
to be solved here is to optimize the quadratic quality 
criterion of identifying the following mixture: 
 

J(θ) = 

1
m

 ∑
j=1

m

 {f ^ (yj) $ [P f0(yj) + Q f1(yj)]}
2, (7) 

 

where m is the number of steps along the y axis, and 

θ = (P, ε0, λ0, γ0, η0, ε1, λ1, γ1, η1)
T is the vector of 

unknown parameters of the probability density 
functions f0(y) and f1(y) from the SB family, 
respectively. The minimum in Eq. (7) was sought using 
the same adaptive search procedure (5). Once the 
mixture is identified and the distributions f0(y) and 
f1(y) reconstructed, the Bayes decision rule for 
detecting thermal anomalies takes the following form6: 
 
u(y) = arg max {P f0(y), Q f1(y)}, (8) 
 
where u(y) is the decision made about the presence 
(hypothesis H1) or absence (hypothesis H0) of TA. 

The choice of the threshold with the use of the 
Johnson approximations for the reconstructed 
temperature field presented in Fig. 1 is illustrated in 
Fig. 2. The optimal criterion of quality of the 
approximation (7) was equal to 0.065 in this case. 

 

FIG. 2. The histogram of reconstructed temperatures 
(1) and Johnson approximations SB  for the observed 
B (2) and TA (3) class. 
 

Figure 3 shows the results of detecting thermal 
anomalies during the NOAA measurement session on May 
26, 1998. The fragments of images with thermal 
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anomalies revealed by the algorithm have been referenced 
to the TR map via the œhot lineB (the ArcView package) 
software. 

When analyzing the video data, artifacts, such as 
flashes on water and clouds at low position of the 

Sun, should be considered. Those can easily be 
excluded using the threshold limits in the first and 
second channels, where the albedo of water and 
clouds is measured. 

 

FIG. 3. Fragments of the video data measured with the AVHRR device from onboard the NOAA-14 satellite 
during the flight on  May 26, 1998. Thermal anomalies detected by the program and assigned to particular places 
in Tomsk Region are marked on the image. 
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