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A semi-Lagrangian, semi-implicit scheme of transfer in the climatic model 

ECSib is described. The semi-Lagrangian method has some advantages as compared 

with the Eulerian approach. The numerical scheme of the model is described for the 

equations of momentum, temperature, near-surface pressure, humidity, and chemical 

tracers. 

 
1. INTRODUCTION 

 

A project on simulation of distribution greenhouse 
gases and their effect upon the climate is developed 
within the frameworks of the world climate program 
(WCRP). The study of greenhouse gases in the 
atmosphere is conducted jointly by specialists on 
atmosphere dynamics and atmospheric chemistry. 
Development of global models for chemical tracers’ 
transfer was the first stage of this project (the 
description of these models and comparison of the 
obtained simulation results can be found, for instance, 
in Refs. 1$3). 

In this paper, we propose a description of a semi-
Lagrangian version of the climatic model ECSib5$7 
where the semi-Lagrangian scheme of transfer is used 
jointly with the semi-implicit scheme of integration 
over time.4 Formulation of the semi-Lagrangian method 
does not depend on the way of spatial adaptation of the 
system’s equations. The results of test computations for 
a passive admixture transfer on a sphere through its 
pole are discussed. 

 

2. THE SEMI-LAGRANGIAN VERSION OF THE 
CLIMATIC MODEL ECSIB. NUMERICAL SCHEME 

 

Consider a system of equations of the atmospheric 
dynamics in the σ-coordinate system on a sphere.5 The 
rates of the momentum variation which are caused by 
vertical small-scale diffusion and surface friction stress 
are described by the equation of diffusion and by 
equations of the Monin-Obukhov theory. The processes 
of convection and small-scale diffusion of heat and 
humidity, processes of condensation and humidity 
vaporization, as well as of the radiation transfer are 
taken into account parametrically. The conditions of 
periodicity along the longitude and the condition that 
the solution is bounded at the poles are taken as 
boundary conditions for the dynamic operator. The  
 

following boundary conditions are put along the 

vertical: σ
•

 = 0 for σ = 0.1; Ôs = gzs for σ = 1, where 
zs is the height of the Earth’s surface above sea level; 

σ
•

 is the vertical component of the rate in the σ-
system of coordinates; g is the acceleration of gravity. 
At the Earth’s surface, one assigns geographical 
average-climatic distributions of ice, ocean surface 
temperature, temperature and humidity of soil at the 
depth of 2 m, latitude distribution of the declination 
angle of the Sun, and the ozone concentration. 
Moisture content of the soil and thickness of snow 
cover vary in time. 

Let us write the system of equations in the vector 
form, which is more convenient to apply the semi-
Lagrangian method. 

The equation for the momentum is 

d(v + 2Ω × r)
dt

 = $∇Ô $ RT∇(ln p) + F
v
, (1) 

where v is the vector of horizontal velocity, T is the 
temperature, p is the pressure, Φ is the geopotential, Ω 
is the angular velocity of the Earth’s rotation, r is the 
radius vector equal to the Earth’s radius, R is the gas 
constant of dry air, and F

v
 are the rates of angular 

momentum that are caused by the Reynolds stresses. 
The equations for temperature, vapor, liquid 

fraction, ice, and the passive admixture are as follows: 

dT

dt
 = 

RT

cp
 
ω
p
 + FT, (2) 

dq

dt
 = Fq, (3) 

dql

dt
 = Fql, (4) 

dqi

dt
 = Fqi, (5) 
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dχ

dt
 = Fχ. (6) 

Here cp is the specific heat of air at constant volume; ω 
is the vertical component of the velocity in the p-
system of coordinates; Fq, Fql, Fqi are non-adiabatic 
sources (sinks); Fχ is the term describing the source 
(sink) and diffusion of the admixture. 

 

2.1. The semi-Lagrangian scheme with vertical 
interpolation. General case. 

 

When numerically solving the equations of 
atmospheric dynamics in the Eulerian form, one have to 
calculate the value of a sought variable X(t + Δt) at 
time t + Δt at the point F of the domain by use of 
known value X(t $ Δt) at the same point but at time 
t $ Δt. In turn, solving equations in the Lagrangian 
form, one calculates X(t + Δt) at the point F while 
using X(t $ Δt) known at some other point O. The 
trajectory connecting the points O and F is a part of a 
great circle of a sphere. The middle point of the 
trajectory is denoted by the letter M. The points O and 
M can be obtained as a solution of the non-linear 
system of equations of characteristics by iteration 
method. In the general case, every equation from the 
system (1)$(6) can be written in the form 

du

dt
 = A + F, 

where A is the total contribution coming from the 
dynamic sources, F is the total contribution from the 
physical sources, the part B which is correspondingly 
resolved here in the dynamic source A is approximated 
by the semi-implicit scheme. Let the subscripts (F, O, 
M) denote the geometric position of a point and the 
superscripts (+, $, 0) denote the time (t + Δt, t $ Δt, 
t). Then the approximation of the above-mentioned 
equation has the form 

(u $ (1 + ε
B
) Δtβ B)F

+ = {X$ + [(1 $ ε
A
) ΔtA $ 

$ (1 $ ε
B
) ΔtβB]

±0 + [(1 $ ε
B
) Δtβ B + 

+ 2Δt F ]$}F,O,M + {[(1 + ε
A
) Δt A $ 

$ (1 + ε
B
) Δtβ B)

±0}F, 

if the explicit terms at time t are calculated as the 
mean value at the end and initial points F and O. The 
values of the corresponding parameters at these points 
are obtained by use of isogeometric interpolation 
procedures.2 

If the explicit terms at time t are calculated for  
the middle point M (the values at this point are also 
obtained by interpolation), we have 

(u $ (1 + ε
B
) Δtβ B)F

+ = {X$ + [(1 $ ε
B
) ΔβB + 

+ 2Δt F ]$$ [(1 $ ε
B
) Δtβ B] 

±0}F,O,M + 

+ {[2Δt A ]
±0}M + {$ [(1 + ε

B
) Δtβ B]

±0}F, 

ε
A
 and ε

B
 are the parameters of averaging to be done 

over the trajectory in the semi-implicit scheme. The 
operation of averaging permits one to eliminate noise 
(gravitation waves). The semi-implicit terms enter the 
equations with the weight β. 
 

2.2. The equations for momentum, temperature, 
humidity, and passive admixture 

 
Further all the designations correspond to those 

accepted in Refs. 5$7. 
The terms at time t are calculated by the following 

way: 

[..]
±0 = 

(1 $ ε
A
) [..]F,O,M

±0
 + (1 + ε

A
) [..]F

±0

2
 

for explicit terms and 

[..]
±0 = 

(1 $ ε
B
) [..]F,O,M

±0
 + (1 + ε

B
) [..]F

±0

2
 

for semi-implicit terms. 
 

The equation for momentum 
 

Definitions of u, A, B, and F and conditions at 

the upper and lower boundaries are as follows: 

X = V + δ
v
(2Ω × r), 

A = $2(1 $ δ
v
) (Ω × V) $ ∇t  $ RT∇(ln(p)), 

B = $∇ 
⎣
⎢
⎡

⎦
⎥
⎤

γT + 
RaT

$

Π$
 Ï ,    F = F

v
, 

Vη=0 = Vl=1,   Vη=1 = Vl=L; 

Ô = γŠ is the quasistatics relation; η = f(p, ps) is the 
generalized (hybrid) vertical coordinate (for instance, 
σ); pressure at the levels η is determined in the 
following way: ! = ` + b Ï; Ï = ps; ` and b  are the 
functions of η; L is the number of layers along vertical 
in the model. 

A comprehensive description of the approximation 
of the equation for momentum in the ECSib model is 
presented in Ref. 7. 

 
The equation for temperature 

 
Definitions of X, A, B, and F and the conditions 

at the upper and lower boundaries are as follows: 

X = T,   F = FT, 

A = 
RT

cp
 
ω
p
,   B = $ 

m′2

m2  τD, 

τ is the matrix describing contribution of divergence to 
the trend of temperature; m, m′ are metric coefficients 
in the cartographic coordinate system. 
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At the upper boundary 

Tη=0 = Tl=1 . 

At the lower boundary 

Tη=1 = Tl=L . 

The semi-Lagrangian approximation of the equation for 
temperature in the interpolation to the middle point of 
the trajectory is 

⎩
⎨
⎧

⎭
⎬
⎫

T $ (1 + ε
B
) βΔt ⎝

⎛
⎠
⎞$ 

m′2

m2  τD   

F

+
 = 

= 
⎩
⎨
⎧

 ⎣
⎡

⎦
⎤T + (1 $ ε

B
) βΔt ⎝

⎛
⎠
⎞$ 

m′2

m2  τD  + 2ΔtFT  

$

+ 

+ (1 $ ε
B
) Δt 

⎭
⎬
⎫

⎣
⎡

⎦
⎤$β ⎝

⎛
⎠
⎞$ 

m′2

m2  τD  
 ±0

 

F,O,M
 + 

+ 
⎩
⎨
⎧

⎭
⎬
⎫

 ⎣
⎡

⎦
⎤2Δt 

RT

cp
 
ω
p
 

 ±0
 

M
 + 

+ 
⎩
⎨
⎧

⎭
⎬
⎫

(1 + ε
B
) Δt ⎣

⎡
⎦
⎤$β ⎝

⎛
⎠
⎞$ 

m′2

m2  τD  
 ±0

F
. 

 
The equation for humidity q and passive 

admixture χ 
 

Definitions of X, A, B, and F and the conditions 
at the upper and lower boundaries are as follows: 

X = (q, χ), A = 0, 

B = 0,  F = Fq. 

Upper boundary: 

(qη=0, χη=0) = (ql=1, χl=1). 

Lower boundary: 

(qη=1, χη=1) = (ql=L, χl=1). 

The semi-Lagrangian approximation of the 
equation for water vapor is 

{q}F = {[q + 2Δt Fq]$}F,O,M. 

Liquid water, ice, and passive admixture χ. The 
approximation scheme is the same as for water vapor: 

{ql}F = {[ql + 2Δt Fql]$}F,O,M 

for liquid water, 

{qi}F = {[qi + 2Δt Fqi]$}F,O,M 

for ice, 

{χ}F = {[χ + 2Δt Fχ]$}F,O,M 

for the admixture. 
 

2.3. The equation of discontinuity with Ï = ps as a 
prognostic variable 

 

d
dt

 ⎝
⎛

⎠
⎞∂p

∂η  = $ 
∂p

∂η ⎝
⎛

⎠
⎞D + 

∂η
•

∂η  + Fm′ , (7) 

Fm′  is the contribution of physical processes to 
variability of the near surface pressure. We have the 
following equalities: 

p = A(η) + b (η) Ï,   
d
dt

 ⎝
⎛

⎠
⎞∂`

∂η  = 0,  

∇ ⎝
⎛

⎠
⎞∂`

∂η  = 0,   
∂Ï
∂η  = 0,  (8) 

where p is the pressure at the corresponding level; η is 
the generalized vertical coordinate (may be σ, like in 
the ECSib model). The equalities yield 

∂b
∂η 

∂Ï
∂t  + 

∂p

∂η D + 
∂
∂η ⎝

⎛
⎠
⎞η

•

 
∂p

∂η  = Fm′ . (9) 

Approximation. Let us denote Fm = Fm′  Δη. Now 
let us consider vertical approximation for each layer l 

(the layer l is between the intermediate layers 
$
l  and  

$
l  $ 1). The equation (9) takes the form 

ΔBl 
∂Ï
∂t  + Δpl Dl +⎝

⎛
⎠
⎞η

•

 
∂p

∂η  $
l
 $ ⎝
⎛

⎠
⎞η

•

 
∂p

∂η  $
l$1

 = Fm. (10) 

Discrete values for η
•

 
∂p

∂η are determined at the 

intermediate levels 
$
l : 

⎝
⎛

⎠
⎞η

•

 

∂p
∂η  $

l
 = $ 

⎣
⎢
⎡

⎦
⎥
⎤

B $
l

 

∂Ï
∂t  + ∑

j=1

l

 {Dj Δpj + (Vj ∇Ï) ΔBj}  + C $
l
,   

 (11) 

where 

∂Ï
∂t  = $ ∑

l=1

L

 {Dl Δpl + (Vl ∇Ï) ΔBl} (12) 

and 

C $
l
 = 0, 

if we suppose that the volume of air occupied by rain 
droplets is not replaced by dry air when the droplets 

fall. If the volume is replaced, C $
l

 = gB$
l  
(P + E) $ gF

p 

$
l
, 

C η=0 = 0, C η=1 = gE, 
Substituting Eq. (11) into Eq. (12), we obtain 

ΔBl 
∂Ï
∂t  $ ΔBl ⎩

⎨
⎧

⎭
⎬
⎫∂Ï

∂t  + Vl ∇Ï  + ΔCl = Fm, (13) 

where 
∂Ï
∂t  is taken from Eq. (12). 

Integrating Eq. (13) over the vertical and using 

∑
l=1

L

 ΔBl = 1, we obtain 

Ï+ = ∑
l=1

L

 ΔBl ⎩
⎨
⎧

⎭
⎬
⎫

Ï$ + 2Δt ⎝
⎛

⎠
⎞∂Ï

∂t  + Vl ∇Ï  

±0
 $ 
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$ 2ΔtC η=1

±0  + 2Δt ∑
l=1

L

 Fm
$ . (14) 

Using ∑
l=1

L

 ΔBl = 1, one can write Fm as  

∑
l=1

L

 ΔBl ( ∑
l=1

L

 Fm) and C η=1

±0   as ∑
l=1

L

 ΔBl (C η=1

±0 ). 

In applying the semi-implicit scheme, the t-terms 
are either interpolated to the middle point or are taken 
as mean values at the initial and end points. 

 
3. THE CASE OF ADVECTION THROUGH A POLE 

FOR A SCALAR FIELD WITH LOCAL 
STRUCTURE 

 
To verify the transfer scheme and some procedures 

of isogeometric interpolation, we have chosen the test 
proposed in Ref. 2. In this test, the rate of horizontal 
advection is put by the formulas 

 

u = U[cosβ cosφ + sinβ sinφ cosλ], 

v = $U sinβ sinλ, 

where β is the angle between the axis of hard rotation 
and polar axis; U = (π/46)/2 radians for a one 
temporal step Δt at the spherical 72×46 grid in the 
ECSib model, Δt = 35 min. 

A scalar field with the local structure that within 
the neighborhood centered at the point (λ = 3π/2, 
φ = 0) is considered as the transferable substance: 

f(λ, φ) = 
⎩
⎨
⎧0.5 (1 + cos(πr/R)), if r < R,

0 in other cases,
 

where r = arccos[cos(λ $ 3π/2) cosφ] radians for  
|λ $ 3π/2| < π/2; R = 7(2π)/72 radians. 

Figures 1$3 present the distributions of the field f 
at the moment preceding the transfer of the local 
structure across the pole, at the moment of structure’s 
transfer through the pole, and after passing the pole. 
As seen from the figures, the transfer is realized 
without any changes in the shape. 

 
 
 

 
 

FIG. 1. Distribution of the field f at the time moment preceding the transfer of the local structure across the 
pole. 
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FIG. 2. Distribution of the field f at the moment of structure’s transfer across the pole. 
 

 
 

FIG. 3. Distribution of the field f after the local structure passage across the pole. 
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CONCLUSION 
 
The three-dimensional models of chemical tracers 

transfer are necessary when estimating global balance of 
greenhouse and other gases, and, what is important, 
they make it possible to interpret series of 
measurements at different points. This paper proposes a 
description of a three-dimensional semi-Lagrangian 
version of the climatic model ECSib developed at the 
Institute of Computational Mathematics and 
Mathematical Geophysics, Siberian Branch of the 
Russian Academy of Sciences. Besides, the model 
permits one to simulate distributions of chemical tracers 
in the atmosphere. 
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