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Based on most common models of the low atmospheric aerosol we have studied 

the information content of the expansion coefficients of the scattering phase matrix 

elements over the generalized spherical functions. By modeling the stochastic 

relations among the informative characteristics of the expansion coefficients and 

aerosol microstructure parameters, under conditions of aerosol transformations, we 

have estimated the corresponding correlation coefficients.  Regression equations are 

constructed for estimates of the effective radii of particles in aerosol fractions and 

their mixtures, as well as for relative content of the components at different stages 

of aerosol transformation. 
 
It is  known quite well that the elements of 

scattering phase matrices of aerosol have high 
information content regarding the aerosol 
microstructure and its optical properties.1 However, if 
the solution of the equation of radiation transfer uses 
expansions over the orthogonal basis of the generalized 
spherical functions (GSF), the elements of the 
scattering phase matrix (SPhM) manifest themselves 
directly in the expansion coefficients.2,3 In this 
connection, it is of practical interest to study the 
information content of the expansion coefficients as 
well as their relations to the aerosol microstructure. 
This would certainly be helpful when developing 
optical methods for identifying the aerosol states during 
its transformations. 

The aim of this work is to analyze the distributions 
of the expansion coefficients  and reveal their properties 
that are closely related, either stochastically or 
analytically, to the effective size of aerosol particles 
(and its fractions). We also aimed in this study at 
revealing how these coefficients may be connected with  
the input parameters determining the aerosol 
transformations. It was among our primary goals either 
to obtain regression functions under conditions of 
accumulation of the measurement errors and errors due 
to incorrect a priori information. 

 

MODELS OF THE NEAR-GROUND AEROSOL 

 

The objects of our study are most common models 
of the low atmospheric aerosol recommended by the 
International Association for Meteorology and 
Atmospheric Physics (IAMAP).4 According to Ref. 4, 
different stages of aerosol transformation are 
characterized by changes in the ratios of main aerosol 
components: D (dust-like particles), W (water-soluble 

particles), S (soot, carbon aerosol of anthropogenic 
origin). During the process of aerosol transformation 
from the continental model C (continental) to the 
urban model U (urban/industrial), relative volume 
content qv of the main aerosol components, D, W, and 
S, vary within the limits of 0.70$0.17, 0.29$0.61, and 
0.01$0.22, respectively. Using data from  
Refs. 4$7, we have interpolated the relations between 
D, W, and S when the content of the dust component 

CD
v   varies from 0.05 to 0.9. In addition to aerosol 

models of C and U (see Ref. 4) types, the models with 

the following values of CD
v , CW

v , and CS
v are considered: 

a) 0.05; 0.65; 0.30; b) 0.30; 0.55; 0.15;  
c) 0.50; 0.44; 0.06; d) 0.90; 0.10; 0.00. Here and 
below, like in Ref. 4, the term œaerosol modelB is used 
to denote each possible set of aerosol components D, 
W, S obtained as a result of interpolation. 

Aerosol components have the following values of 
the refraction and absorption indices at the wavelength 
λ = 0.55 μm: n = 1.53 (D and W) and 1.75 (S); 
i = 0.008 (D), 0.06 (W), 0.44 (S). Distributions of 
particles over radii r of the kth aerosol component 
(k = D, W, S) are approximated by the single-mode 
lognormal law 
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where the parameter rk
0 takes the values 0.5, 0.005, and 

0.0118 μm for the components D, W, and S, 
respectively; σk = 1.09527 (D and W) and 0.69315 (S). 
The dust component describes the coarse-disperse 
fraction with the effective radius, i.e., the ratio of the 
third moment of the distribution to the second one,  



1082   Atmos. Oceanic Opt.  /December  1998/  Vol. 11,  No. 12 A.B. Gavrilovich and V.I. Bychek 
 

rD
eff = 10.033 μm. The components W and S describe the 

fine aerosol fraction (rWeff = 0.1003 μm, rS
eff = 

= 0.0395 μm). Each of the aerosol models is a 
polydisperse mixture of the D, W, and S components 
with a three-mode size-distribution function  
 

f(r) = ∑
k=1

3

 qk fk(r) ,  (2) 
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and modes rk
m = rk0 exp($σ2

k). In Eqs. (2) and (3), 
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k  is the weighting factor; mk

2 = 

= (rk0)
2exp(2σ2

k) and mk
3 = (rk0)

3exp(4.5σ2
k) are the 

second and the third moments of the kth distribution. 
 

ANALYSIS OF THE EXPANSION COEFFICIENTS 

 
In the approximation of spherical symmetric 

particles, the scattering phase matrix of aerosol is a 
partitioned diagonal matrix 
 

xij( )θ =

x x

x x

x x

x x

11 12

21 22

33 34

43 44

0 0

0 0

0 0

0 0

 .  (4) 

 
Taking into account the symmetry of the elements 

xij, the relations x11 = x22, x33 = x44, x12 = x21, x43 = $x34 
are valid. In this case the scattering phase matrix is 
completely defined by four angular functions: the 
diagonal, x11(θ) and x44(θ), and off-diagonal, x12(θ) 
and x34(θ), ones. The element x11(θ) is normalized 

according to the expression 
1
2 ⌡⌠

$1

1

 x11(μ) dμ = 1 where 

μ = cos θ, θ is the scattering angle. 
For each of the aerosol models the scattering phase 

matrix is presented as a weighted average characteristic 
of a mixture of three components according to the 
expression 
 

xij(θ) = ∑
k=1

3

  Ck
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eff

 x
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ij
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where <Qk> is the section-averaged scattering efficiency 
factor for the kth component: 

<Qk> = 
1

mk
2

 ⌡⌠
0

∞

 Qk r
2 fk(r) dr ,  (6) 

 
<Qk> is the corresponding value for the mixture. 

Figure 1 illustrates the elements x11(θ) of the 
scattering phase matrix calculated by the Mie formulae8 
for the initial components D, W, S of the C and U 
models of the near-ground aerosol. It is natural that the 
dust component D has a strongly  forward peaked 
scattering phase function. For the dust component the 
asymmetry coefficient, that is the ratio fluxes scattered 
into the forward and backward hemispheres, equals 
22.1. The scattering phase functions of the W and S 
components are less forward peaked, have similar 
angular behavior at lower values of the asymmetry 
coefficient (8.1 and 2.7, respectively). 

 
 a  b 

FIG. 1. The elements of the scattering phase matrix 
for the components D, W, and S (a) and aerosol 
models C and U (b) for the lower atmosphere  
of the Earth (x ∼ij = xij/x11). 
 

The elements of the scattering phase matrix 
calculated by Eq. (5) for the models of urban (U) and 
continental (C) aerosol are presented in Fig. 1b. As 
seen from the figure, angular functions corresponding 
to different states of aerosol have qualitatively similar 
form and only weakly resemble the variations of the 
input parameters. 

Presenting optical information in the form of the 
distributions of the expansion coefficients of scattering 
phase matrix elements, over the GSFs, over the discrete 
argument l is more convenient for analyzing the aerosol 
transformations. When calculating the expansion 
coefficients, taking into account the symmetry relations 
x11 = x22 and x33 = x44 which are valid in the 
approximation of spherical particles, one can restrict 

oneself to two generalized spherical functions, Pl
00(μ) 

and Pl
20(μ). The expansion coefficients are calculated 

by the following formula3: 
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x
l
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 xij(μ) P00
l (μ) dμ, ij = {11, 44};  (7) 

 

x
l

ij = 
2l + 1

2  ⌡⌠
$1

1

 xij(μ) P20
l (μ) dμ, ij = {12, 34}.  (8) 

 

Calculation of the integrals (7) and (8) faces some 
difficulties due to strongly oscillating behavior of the 

functions Pl
mn(μ) at large l. We used the technique 

proposed in Ref. 9. This techniques guarantees a high 
reliability of the calculations. 

Figure 2 presents the distributions over l of the 
expansion coefficients of the diagonal elements x11(θ) 
and x44(θ) of the scattering phase matrix. The 
distributions are obtained by Eqs. (7) for the initial 
components D, W, S. Besides, the figure depicts the 
distribution for six models of the near-ground aerosol 
that reflect different stages of the aerosol 
transformations. For l ≥ 10, distributions of the 
coefficients x11(θ) and x44(θ) coincide within the limits 
of the graphical representation errors. Some differences 
may be observed only in the domain of small values of l 

(curve 4′ corresponds to x44
l ). So the further analysis is 

performed for the distributions of x11
l ; the index œ11B 

at x11
l  is omitted. 

 
 a  b 

FIG. 2. Distributions over l of the coefficients of the 
expansion of the diagonal elements of the scattering 
phase matrix of the components D, W, S over the GSF 
(a) and of the aerosol models (b) at different stages of 
the aerosol transformation: CD

v  = 0.05 (1); 0.17 (U) 
(2); 0.3 (3); 0.5 (4, 4′); 0.7 (C) (5); 0.9 (6). 
 

As seen from Fig. 2, the aerosol components as 
well as different aerosol models have considerably 
different distributions of the coefficients xl. The 
components D, W, and S (Fig. 2a) correspond to the 
single-mode distributions with separate positions of lm 

maxima. For instance, the integer lm values for the 
components S and W with the effective diffraction 
parameters ρeff = 2πreff/λ = 0.45 and 1.14 equal to 1 
and 2, respectively; for the D component (ρeff = 114.5), 
the values of lm are ∼ 135$140. 

The process of aerosol transformation visually 
manifests itself in deformation of the distributions xl. 
constructed using different models from Fig. 2b. The 
content CD

v  of the dust component (0.05 < CD
v  < 0.90) 

is the input parameter governing different stages, 1$6, 
of the aerosol transformation. One can see that, in 
contrast to the components D, W, and S, the 
distributions of xl for the aerosol mixtures have a 
characteristic two-mode behavior. It is evident that the 
first maxima of the distribution is a sum of two 
coinciding maxima and reflects the presence of S and W 
components of the aerosol simultaneously; the second 
maximum means the presence of the dust component D. 
Here the components W and S  are considered jointly 
as the fine fraction; the D component is considered as 
the coarse-dispersion fraction. It should be expected 
that the presence of an additional fraction with the 
effective diffraction parameter of the intermediate value 
(∼10) leads to a three-mode distribution. Preliminary 
estimates show that the possibility of distinguishing 
among different components of a mixture by the 
distributions of expansion coefficients may be practical 
only if the ratio of effective radii of the fractions 
exceeds certain limiting value Klim = 4$5. For the 
components W and S, the ratio is 2.53 what is 
insufficient for their separation. 

According to calculations, the positions of maxima 
lmk  do not depend on the relative content of the 
components as well as on the variation of the efficient 
values of optical constants n and k within the frames of 
the accepted model of aerosol transformation. Weak 
variability of the maxima positions is indicative of a 
functional connection between lmk and the efficient 
radii of particles reff k of the aerosol fractions under 
study. The connection can be represented as an estimate 
reff k ∼ cλlmk where c = 0.11$0.14. Here k = {1, 2} is the 
number of a fraction. 

The ratio of amplitudes of xl at the corresponding 

maxima gradually varies with variation of CD
v .  At 

limiting values of CD
v  which are equal to 0.05 and 0.9, 

the distributions of the coefficients become similar to 
the single-mode ones what is characteristic of the  
aerosol components. 

The process of aerosol transformation, as seen from 
Fig. 2b, was monitored at the  characteristic points 
corresponding to zero values of the first and second 
derivatives. The characteristics monitored are: the value 
of the expansion coefficient in the second maximum 
xl(lm2), the value of the expansion coefficient in the 
minimum xl(lmin), the position of the minimum lmin, 
the slope, tan α,  at the inflection point between the 
minimum and the second maximum. These information 
bearing features are denoted below as A, B, C, and D, 
respectively. 
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ANALYSIS OF THE STOCHASTIC RELATIONS 

 
In the general case, each of the above information 

bearing features may be affected by a number of random 
factors such as the calculation errors δcalc, measurement 
errors in the matrix’s elements δmeas, inaccuracies of 
assigning the input parameters of the model CD

v, CW
v , or 

reff; so their ratios should be characterized with the use of 
mathematical statistics concepts.11 Analysis of calculated 
data indicates that the information bearing features, 
Y = {xl(lm2), xl(lmin), lmin, tan α} are nonlinear functions 
of each of the input parameters X = {δcalc, δmeas, C

D
v, CW

v , 
 reff}. However, in the neighborhoods of the fixed values 
of mathematical expectation of the argument, the 
nonlinear function y = f(x) can be approximated by a 
linear function whose derivative f′x defines the value of 
the dimensionless coefficient of the sensitivity of a 
characteristic to variations in the input parameter10: 
 

ξ = 
x
y
 fx′ = 

Δy/y

Δx/x
 . (9) 

 

 
 a  b 

 
FIG. 3. The sensitivity coefficients of the informative 
characteristics (A, B, C, D) to input parameters CD

v 
(a) and reff (b). 
 

Coefficients of sensitivity which are presented in 
Fig. 3 enable one to estimate relative limits Δy/y of 
variation for every information bearing feature n,  given 
the parameter of the model x and the range of its 
variation Δx. For instance, if the aerosol is transformed 
from the continental model to the model defined by the 
concentration CD

v = 0.5, one can easily estimate variations 
using Fig. 3a: 70% for xl(lm2), 50% for xl(lmin), 30% for 
lmin. The most sensitive characteristic  is tanα; however, 
as it is demonstrated below, it can be used only in some 
cases. Figure 3b that presents the data on the sensitivity 
of the informative characteristics to variation of reff does 
not require additional explanations. 

Let us estimate the effect of calculation errors δcalc 
upon the values of CD

v and reff. Relative error in 
calculations of the expansion coefficients by the 

technique from Ref. 9 does not exceed 1% for l < 40 
and 10% for l > 140. Assuming that the relative error of 
determining xl(lm2) is 10% and that for xl(lmin) it is 
1%, calculation errors δcalc were estimated for lmin and 
tanα. For instance, δcalc varied from 3% (model U) to 
12% (model C); for tanα , it was ∼3%. The values δcalc 
obtained for each of the characteristic at different 
stages of the aerosol transformation, with allowance for 
the sensitivity coefficients ⏐ξ⏐, were then used to 
determine the corresponding relative errors of input 
parameters. The errors of CD

v  and reff that are caused by 
calculation errors are given in Tables I and II. 
 
TABLE I. Calculation errors CD

v , %, in different 
ranges for the characteristics A, B, C, and D. 
 

qv 5$17 17$30 30$50 50$70 70$90 90$100 
A 9.83 7.82 6.95 4.61 2.33 0.75 
B 1.28 1.02 1.00 0.65 $ $ 
C 8.40 9.20 16.7 10.5 $ $ 
D 2.73 2.11 1.15 1.19 $ $ 

 
TABLE II. Calculation errors reff, %, in different 
ranges for the characteristics A, B, C, and D. 
 

reff, 
μm

0.063$
0.075

0.075$
0.094

0.094$
0.151

0.151$
0.299 

0.299$
0.920 

0.920$
10.03 

A 1.57 3.25 6.47 9.10 9.49 11.82 
B 0.20 0.42 0.92 1.28 $ $ 
C 1.34 3.80 15.4 20.8 $ $ 
D 0.44 0.87 1.07 2.34 $ $ 

 
As seen from the Tables, for the diagonal elements 

of the matrix, errors in the input parameters CD
v  and 

reff connected with calculation errors of xl vary 
approximately from one percent for B to several 
percents for A and D characteristics; in a particular 
case, they reach 20.8% (for C in the range 
0.151 < reff < 0.299 μm). Thus, in the cases A, B, and 
D, the calculation errors δcalc have a comparatively 
weak effect upon the value of the input parameters. 

In real experiments, together with the above-
mentioned errors, one should take into account random 
errors δmeas of measurements of the angular functions of 
the matrix elements. For this purpose, statistical errors of 
measurements were simulated by a random-number 
generator, and coefficients K of error amplification were 
calculated (they express the sensitivity of the information 
bearing features to such variations). The results obtained  
for the model C are presented in Table III. 

Relative error of measurements δmeas was presented 
by a discrete sequence of values 0.02, 0.04, 0.06, 0.08, 
0.10 given in the upper row of the Table III. The 
simulated random numbers had uniform distributions 
what is characteristic of a œbad measurementB. As seen 
from Table III, high values of the coefficients K 
reaching several units are characteristic of the features 
C and D (the jump in the coefficient KC can be 
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explained by the discrete nature of the characteristic).  
The coefficients KC and KD have comparable 
magnitudes; in some cases, they exceed the 
corresponding sensitivity factors |ξ| presented in Fig. 3. 
Here, the variations Kδmeas of a characteristic may fall, 
due to the measurement errors,  out of the limits of the 
value |ξ|δx determined by the input parameter X. The 
values of CD

v and reff corresponding to these cases can 
be easily estimated by the information from Fig. 3 and 
Table III. Analysis of the sensitivity coefficients, with 
the allowance for measurement errors, demonstrates 
that the expansion coefficient in the second maximum 
xl(lm2) has the largest information content regarding 
the variations of the microstructure parameters. 

 

TABLE III. Coefficients of error amplification K for 
the  characteristics  A, B, C, D, and δmeas. 
 

δmeas 0.02 0.04 0.06 0.08 0.10 

KA 0.83 1.00 1.20 1.25 1.20 
KB 0.50 0.63 0.83 0.91 0.77 
KC 0 3.23 2.17 1.61 1.30 
KD 1.89 2.78 3.33 3.45 3.23 

 

In practice, data on the input parameters are 
always inaccurate. To take this fact into account, 

absolute variations of CD
v and CW

v  within the limits 

ΔCDW
v  = ± 0.05 were simulated with a random-number 

generator for each aerosol models considered. The 

carbon component was presented as the difference CS
v

 = 1 $ CD
v $ CW

v . In this case, as follows from Eq. (3), 
efficient radii of the mixture particles reff are also 
random values. 

Regression of Y on X and X on Y (X = {CD
v , reff}, 

Y = xl(lm2)) was analyzed with the allowance for 
 

random nature of δmeas, CD
v , and CW

v . In the general 
case, stochastic connection between the values may be 
multiple, and one should take into account paired 
correlations.10 However, according to calculations of 

xl(lm2) under variation of the parameters X2 = CW
v  and 

X3 = δmeas, random values xl(lm2) and CW
v , xl(lm2) and 

δmeas are in fact not pair-wise correlated and the 

regression functions η̂YX(x) and ĝXY(y) can be 
restricted to two summands10 
 

η̂YX(x) = αYX + βYXx; 
 

ĝXY(y) = αXY + βXYy .  (10) 
 

for each aerosol model. Here x and y are random values 

X = X1 = {CD
v , reff} and Y = xl(lm2); αYX and αXY are 

constants; βYX = rYXσY/~σX is the coefficient of 
regression of Y upon X; β is the coefficient of 
regression of X on Y; σX and σY are rms deviations. 
The correlation coefficient 
 

rXY = rYX = 
1

σX σY (N $ 1)
 × 

 

× ∑
i=1

N

 (xi $ mx)(yi $ my)  (11) 

 

(mx and my are mathematical expectations of X and Y) 
expressing the degree (measure) of the relationship 
between X and Y was determined by a sample N > 100 
what guaranteed satisfactory (< 5%) error of 
calculations. 

Coefficients for the regression equations (10) 

calculated for δmeas = 0.1 and ΔCDW
v  = ± 0.05 are 

presented in Table IV. 

 

TABLE IV. Coefficients for the regression equations (10). 
 

T 1 2 3 4 5 6 7 8 9 
mX; X = CD

v 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
mX2

; X2 = CW
v  0.63 0.59 0.55 0.49 0.44 0.37 0.29 0.20 0.10 

mX; X = reff 0.08 0.09 0.11 0.13 0.17 0.22 0.31 0.48 0.92 
mY 0.36 0.77 1.25 1.88 2.66 3.83 5.70 9.27 18.4 

rXY;  X = CD
v  0.77 0.82 0.83 0.75 0.79 0.85 0.85 0.86 0.86 

rXY;  X = reff 0.34 0.40 0.47 0.47 0.43 0.57 0.62 0.58 0.79 
αXY; X = CD

v 0.04 0.08 0.12 0.22 0.32 0.38 0.51 0.66 0.83 
αYX; X = CD

v 0.01 $0.13 $0.17 $0.49 $3.23 $3.76 $9.55 $31.4 $147 
αXY; X = reff 0.01 0.07 0.06 0.05 0.04 0.02 0.02 0.08 $0.08 
αYX; X = reff $0.12 0.25 0.55 1.19 2.01 2.47 3.35 5.59 7.81 
βXY; X = CD

v 0.17 0.15 0.14 0.10 0.07 0.06 0.03 0.02 0.01 
βYX; X = CD

v 3.53 4.49 4.76 5.93 11.8 12.6 21.8 50.8 184 
βXY; X = reff 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.04 0.05 
βYX; X = reff 6.38 5.87 6.58 5.30 3.94 6.13 7.54 7.64 11.6 

 

The number T in the Table IV corresponds to 
different stages of aerosol transformation (CD

v  = 
= 0.1 T). Two upper rows contain input parameters of 

the models. One can see that for X = CD
v  the values of 

the correlation coefficients rXY fall within the range 
0.7$0.9 what corresponds to a strong correlation 
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according to accepted classification.11 At X = reff, the 
correlation coefficients mainly correspond to a medium 
correlation. With increasing T, the correlation grows to 
values corresponding to a strong correlation. It is 
evident that the correlation coefficient grows with a 
decrease in the errors δmeas and ΔCD

v , and the 
connection is close to a functional one. 

The calculated data for the regression coefficients 
α and β in the lower part of the Table IV for a priori 
models of the near-ground aerosol enable one to obtain 
(by use of Eq. (10)) a prognostic estimate of the 

conditional mathematical expectation CD
v  and reff (or 

xl(lm2)) by non-random values xl(lm2) (or C
D
v  and reff) 

obtained when processing separate realizations of the 
diagonal elements of the scattering phase matrix. 

 
EXPANSION COEFFICIENTS FOR  

OFF-DIAGONAL ELEMENTS 

 
The expansion coefficients for the off-diagonal 

elements x12(μ) and x34(μ) of the scattering phase 
matrix are presented in Fig. 4. They exhibit a weak 

sensitivity of distributions xij
l  to variations of the 

aerosol structure parameters CD
v  and reff. One can see 

that aerosol transformation from the continental model 
C to the urban model U that is being accompanied by 
variation of CD

v from 0.70 to 0.17 leads, in general, to 
insignificant variations of the distributions. Some 
differences are observed only in the ranges l = 2$6 for 

x12
l  and l = 6$20 for x34

l . The maximum value of the 
dimensionless sensitivity factor does not exceed 0.24 for 
CD

v  and 0.4 for reff what is significantly less than the  
values obtained for the diagonal elements of the matrix 
in the case of the characteristic A. 

 
 

 a  b 

 

FIG. 4. Coefficients of expansion over the GSF  for 
the off-diagonal elements x12 (a) and x34 (b) of the 
scattering phase matrix and the models of 
continental (C) and urban (U) aerosol. 
 

RESULTS OF THE STUDY 

 
The information content of the expansion 

coefficients of scattering phase matrix elements over the 
GSFs  have been studied in relation to variations of the 
aerosol microstructure parameters using most common 
aerosol models for the lower Earth’s atmosphere.4$7 

Analysis of the distributions of the expansion 
coefficients of the diagonal elements of the scattering 
phase matrix made it possible to reveal some information 
bearing features that are closely related (stochastically or 
functionally) with the microstructure and input 
parameters determining the aerosol transformation. For 
instance, the number of maxima in the distributions 
coincides with that of the aerosol fractions. 

The numbers of the expansion coefficients in the first 
and second maxima are linearly connected with the 
effective radii of particles from the fine and coarse  
fractions, respectively. The value of the expansion 
coefficient in the second maximum is in a close stochastic 
connection with the concentration CD

v of the coarse 
fraction determining different stages of the 
transformation; the medium connection is characteristic of 
the effective radius reff of the mixture particles. 

We have analyzed the connections between an 
information characteristic of a distribution and the input 
parameters of the models. We have obtained quantitative 
data on the sensitivity coefficients of these characteristics 
to input parameters, coefficients of error amplification 
due to random measurement errors, and the errors of 
calculation of the expansion coefficients. Based on these 
data, we have revealed the characteristic  xl(lm2) which is 
most informative with respect to variations of the 
parameters CD

v and reff. 
Under conditions accumulation of the measurement 

errors and inaccuracy of a priori information about the 
models, the values of the coefficients of correlation 
between the input parameters CD

v, reff, and the 
characteristic xl(lm2) were obtained, and prognostic 
functions of regression constructed for different stages of 
the aerosol transformation. 

Expansion coefficients for the off-diagonal elements 
x12(θ) and x34(θ) of the scattering phase matrix were 
calculated. They are shown to be weakly sensitive to 
variation of the aerosol parameters CD

v and reff during the 
process of aerosol transformation. 
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