
V.A. Tartakovski and N.N. Mayer Vol. 11,  No. 11 /November  1998/ Atmos. Oceanic Opt.  
 

0235-6880/98/11  1001-05  $02.00  © 1998 Institute of Atmospheric Optics 
 

1001

LIGHT BEAM WITH AZIMUTH CARRIER FREQUENCY IN VACUUM AND  

IN AN INHOMOGENEOUS MEDIUM 
 

V.A. Tartakovski and N.N. Mayer 
 

Institute of Atmospheric Optics, 

Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received July 31, 1998 
 

We consider in this paper the problem on propagation of a Gaussian beam 

with a real zero in the initial conditions. We have derived a solution to the 

Helmholtz equation that describes this problem for vacuum. We have calculated 

numerically the probability of conservation of the azimuth carrier frequency, 

produced by the real zero, during the wave propagation through  an inhomogeneous 

medium. 
 

1. INTRODUCTION 
 

Let a light wave propagates along the vertical 
coordinate axis and has real zero in a horizontal plane. 
Around this zero an azimuth oscillation exists, whose 
phase has the vortex shape. The size of a vortex is 
determined by the size of the zero-point neighborhood 
where the phase remains a monotonic function of the 
azimuth angle. The derivative of the linear component 
of the phase vortex with respect to the angle has the  
meaning of the azimuth carrier frequency, that has only 
integer values equaled to the order of the zero. 

The propagation of a wave through an 
inhomogeneous medium results in modulation of the 
azimuth carrier frequency. The increasing turbulence 
will, in the final result, break the monotonic behavior 
of the phase around the zero point, and the azimuth 
carrier frequency disappears. 

The phenomena described have been, in part, 
considered in Refs. 1, 2, and 3. In this paper we solve 
the problem on propagation of a Gaussian beam with 
the azimuth carrier frequency through vacuum in a 
very simple way, and study, by numerical 
simulations, the propagation of such a beam through 
turbulent media. 
 

2. PROPAGATION OF A LIGHT BEAM WITH 

AZIMUTH CARRIER FREQUENCY  

THROUGH VACUUM 

 
A monochromatic scalar field may be presented, in 

a cylindrical coordinate system r, ϑ, and z,  in the 
following form: 
 

W(r, ϑ, z) = ∑
m = $∞

∞

 
 e

imϑ ⌡⌠
0

∞

 
 Sm(ρ, z) Jm(ρr) ρdρ. (1) 

 
In this expression the variable z shows the 

direction of wave propagation, the angle ϑ is the 

azimuth, m has the meaning of the azimuth frequency, 
ρ is the radial frequency, and Sm(ρ, z) is the spatial 
spectrum in the plane z. The symbol Jm denotes the 
Bessel function of the first kind and  of the order m.  

The field (1) should obey the Helmholtz equation 
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By substituting Eq. (1) into Eq. (2), we obtain the 
following expression: 
 

0 = ∑
m = $∞

∞

 
 e

imϑ ⌡⌠
0

∞

 
 ρ ⎩

⎨
⎧
 ⎣
⎡

⎦
⎤∂2Sm(ρ,z)

∂z2  + k2 Sm(ρ,z)  Jm(ρr)+ 

 

+ ρ2
 ⎣
⎡∂

2Jm(ρr)
∂(ρr)2  + 

1
ρr 

∂Jm(ρr)
∂(ρr)  $

⎭
⎬
⎫

⎦
⎤m2
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(3) 
 
Taking into account, that the expression within the 
second square bracket in Eq. (3) is equal to $Jm(ρr), 
we may write the differential equation for the spatial 
spectrum in the following form: 
 
∂2Sm(ρ, z)

∂z2  + (k2 $ ρ2) Sm(ρ, z) = 0 , (4) 

 
and the partial solution of this equation, for the wave 
propagating in the positive direction along the z axis,  
with the initial condition Sm(ρ) is as follows: 
 

Sm(ρ, z) = Sm(ρ) exp iz k
2 2
− ρ .  (5) 

 
To make further calculations, we present the 

square root in this expression by the first terms of the 
power series, assuming the radial spatial frequency ρ to 
be small as compared to the wave number k 
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Let the field in the plane of the source at z = 0 

be Gaussian function with the vortex factor rn eimϑ, 
which is real zero of the order n, at the origin of 
coordinates: 
 

W(r, ϑ) = rneimϑ
 exp ⎝

⎛
⎠
⎞$ 

r2

2c2 $ i 
r2k
2R

 = W(r) eimϑ. (7) 

 

Here c and R are the constants characterizing the initial 
width of the beam and the curvature of the wave front. 

The spectrum Sm(ρ) in the source plane is 
determined by the following decomposition of the 

function W(r) eimϑ: 
 

Sm(ρ) = ⌡⌠
0

2π

 ei(n$m)ϑ dϑ ⌡⌠
0

∞

 W(r) Jm(ρr) rdr = 
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0

∞

 δmn W(r) Jm(ρr) rdr = Sn(ρ). (8) 

 

By substituting the radial part of the field (7) in this 
decomposition and calculating the integral, we obtain 
the expression for spectrum in the plane of the source  
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In so doing, we used the integral tabulated  in Ref. 4  
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Re a > 0, Re n > $ 1, ρ > 0. 
 

Thus, for all m, except m = n, the spectrum 
Sm(ρ, 0) is equal to zero, and from the sum in Eq. (1) 
only the field remains that is caused by the spectrum 
Sn(ρ, z), that allows one to find the field in the plane 
of the receiver using the approximation (6) and the 
integral (10) 
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where D = z/kc2 is the dimensionless diffraction 
length. 

It is seen, that the real zero is at the center of the 
beam at all z, the order of the zero does not vary at 
propagation, and the azimuth carrier frequency n also 
keeps present. This corresponds to the result obtained 
in Ref. 1.  At n = 0 expression (11) reduces to usual 
Gaussian beam5 without the vortex factor. 

Note, that no analytical solution solely for the 
vortex phase factor eimϑ has been obtained. At 
numerical simulation of the beam propagation with this 
factor the artifacts arise in the form of high frequency 
amplitude and phase modulations. It is evidently 
connected with that the function eimϑ is undefined at 
the point r = 0, as it was noted in Ref. 2. 

Let us study focal spots, that are produced by a 
Gaussian beam with the zero factor of a more general 
view, x + (a + ib) y, which is a combination of linear 
terms of a power series in the neighborhood of zero 
point. Let us set the beam in a Cartesian coordinate 
system in the following form: 
 

W(x, y) = [x + (a + ib)y] exp ⎝
⎛

⎠
⎞

$ 
x2 + y2

2q2  , (12) 

 

where q2 = c2 R/(R + ikc2) is the complex constant. 
Using the relations 
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where Fxa is the operator of one-dimensional Fourier 
transform, we perform a two-dimensional Fourier 
transformation of the expression (12), in Cartesian 
coordinates, and find the representation for the spatial 
spectrum of a plane wave in a Gaussian beam with the 
real zero at its center 
 
S(α, β) = i 2π q4 [α + (a + ib) β] × 
 

× exp [$ (α2 + β2) q2/2]. (13) 
 

Let the focal spot be the square of the module of 
this spectrum 
 

⏐S(α, β)⏐2 = (2π)2⏐q⏐8 [α2 + (a2 + b2) × 
 

× β2 + 2a αβ] exp [$ ⏐q⏐8 (α2 + β2)/c2], (14) 
 

where a, b, and “ are real-valued constants. 
The spatial spectrum (13) of the Gaussian beam 

with the vortex factor has the same factor in the 
frequency range αβ. From that it follows, in particular, 
that both these functions have no a constant 
component. Because of the central symmetry of 

function ⏐S(α, β)⏐2, its axial  moments of inertia of 
the first order will be equal to zero. Therefore, the field 
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has no a common tilt of the wave front in a small 
neighborhood of the real zero point. 

The expression for the focal spot in Eq. (14) 
contains, as a constant factor, the second order surface 

in the coordinate system αβ in the square brackets, that 
explains the dichotomy of the focal spots2,3 and also 
their ring shape (Fig. 1, frames 3, 5, and 7). 

 

FIG. 1. Real-zeros and the phase vortices of a wave and its Fourier transforms when propagating through an 
inhomogeneous medium (C2

n = 10$14 m$2/3, L = 2000 m). Intensity of the wave with the real zero at the center of 
the Hartmann subaperture (+) (1) and the corresponding  phase (2). Focal spots (3, 5, and 7) and the phase (4, 6, 
and 8), which correspond to the focal spots, located opposite to the wave with the real zero (1 and 2) when 
increasing the size of the subaperture. 

 
3. PROPAGATION OF A LIGHT BEAM WITH 

THE AZIMUTH CARRIER FREQUENCY 

THROUGH AN INHOMOGENEOUS MEDIUM 
 

We have carried out a numerical experiment to 
study the phase of the beam with the vortex factor 
propagated through an inhomogeneous medium. We 
used known numerical model described in Ref. 6. The 
Gaussian beam and its spatial spectrum were 
approximated by periodic functions and then entered 
into a computer as two-dimensional matrices of 
readouts. Thus formed matrix has the dimensionality 
100, that ensures the adequacy of representing 
continuous functions by their discrete   prototypes. We 
have used two phase screens in our simulation of the 
inhomogeneous medium with the spectral density of the 
refractive index corresponding to the atmospheric 
turbulence in the inertial interval. The law of energy 
conservation holds in the model with the computer 
accuracy. The spectral density of the phase fluctuations 
and other model parameters are defined by the 
following relations: 
 

Fs(i) = 0.489 r$5/3
%  (i2 + i2

%)$11/6,  

i% = 
2π
L%

 , r% = 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫0.423 k2 ⌡⌠

L

 C2
n(l) dl

$3/5

, (15) 

 

where r% is the Fried radius of coherence, C2
n is the 

structure constant of the refractive index, i is the 
spatial frequency, L is the path length. The outer scale 
of the turbulence L% is equal to 1 m, k = 2π/λ, the 
wavelength λ is equal to 0.6328 μm. 

It is seen from Fig. 1, that the wave, propagated 
through an inhomogeneous medium (C2

n = 10$14 m$2/3, 
L = 2000 m) and having the real zero within the 
Hartmann sub-aperture without screening, forms the 
focal spots with zero as well. Both functions have the 
azimuth carrier frequency in the neighborhood of the 
zero point. This property is not influenced by the sub-
aperture size, at least when the zero point is inside the 
sub-aperture, and its size is less than the size of the 
phase vortex. 

The vortex size can be estimated by the diameter 
of the greatest circle centered at the zero point, where 
the phase is still a monotonic function of the azimuth 
angle. In the plane z = const in the neighborhood of the 
zero point, the phase both of the wave functions (11) 
and (12) and the spatial spectrum (13) is the phase of 
vortex factor x + (a + ib) y. In the coordinate system 
r ϑ it does not depend on r and has the form 
 

( )ϕ ϑ
ϑ

ϑ ϑ
�

=
+

arctan
b

a

sin

cos sin
. (16) 
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Let us find the derivative of this phase with 
respect to the azimuth angle ϑ 
 

( ) ( )

d

d

ϕ

ϑ ϑ ϑ ϑ

� =
+ +

b

b asin cos sin
2 2

. (17) 

 

From this expression it is seen that the derivative does 
not change the sign with varying ϑ. Consequently, the 
phase of the wave in the neighborhood of the real zero 
point is a monotonic function of the azimuth angle with 
the vertex at the real-zero point. 

Thus, the presence of simultaneously the real zero, 
the azimuth carrier frequency in the wave and in its 
spectrum of plane waves takes place both in vacuum, 
and in an inhomogeneous medium. 

We defined in numerical experiment the path 
length in an inhomogeneous medium, along which the 
 

azimuth carrier frequency of a Gaussian beam with 
the vortex factor in the form (7) and (11) conserves. 
The presence of the azimuth carrier frequency in the 
beam during its propagation through an 
inhomogeneous medium was set visually by the 
presence or absence of the monotonic function of 
phase around the zero point. We have considered two 
variants: the presence of a monotonic phase in the 
ring area, where the intensity of the wave is large, 
and in a small neighborhood of the zero point, where 

the intensity is small. The probability that the 
azimuth carrier frequency conserves was determined 
by the ratio of the number of favorable cases to the 
sample size equaled to 10. The samples of the real 
part of the wave, its intensity, and phase for different 
orders of the carrier frequency are shown in Fig. 2. 
The results are also presented in Table I. 

 

FIG. 2. The beam with the azimuth carrier frequency in an inhomogeneous medium. Each column corresponds to one 
realization. Upper row shows the real part of the wave, the middle one corresponds to the intensity, and the lower 
one to the phase. The order of the azimuth carrier is equal to unity for the first column, three $ for the second one, 
six $ for the third one, and seven $ for the fourth column. C2

n = 10$15 m$2/3, r% = 0.74 m, L=100 m, and β2
%

 = 0.0005 for the first and second columns. C2
n = 10$15 m$2/3, r% = 0.27 m, L = 500 m, and β2

% = 0.009 for the third 
and fourth columns. The size of the matrix is equal to 1 m. 
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TABLE I. The sampling probability pc of the n-order azimuth carrier conservation versus the path length L and 

turbulent characteristics C2
n, r%, and β2

%. 
 

r%, m C2
n, m

$2/3 β2
% L, m 1 2 3 4 5 6 7 8 9 10 n 

0.74 10$15 0.0005   100 1 1 1 1 1 1 1 1 1 1  

0.27 10$15 0.0090   500 0.3 0.6 0.6 1 1 1 1 1 1 1  

0.18 10$15 0.0330 1000 0.2 0.3 0.4 0.6 0.8 1 1 1 1 1  

0.14 10$15 0.0690 1500 0.2 0.2 0.4 0.5 0.9 1 1 1 1 1 pc 

0.12 10$15 0.1200 2000 0.2 0.9 0.4 0.4 0.6 0.8 1 1 1 1  

0.18 10$14 0.0050   100 0.6 1 0.3 0.7 1 1 1 1 1 1  

0.70 10$14 0.0920   500 0.2 0.2 0.6 0.9 0.9 0.2 0.3 0.8 0.6 0.7  

 
Note: The bold-type values of the probability correspond to the carrier frequency in small neighborhood around 

real-zero point, the other values of probability correspond to the presence of the carrier in the ring area (see Fig. 2, 
frames B, E, H, and K). The sample size is equal to 10. 

 
Analysis of data compiled in this table shows, that 

the azimuth carrier frequency of a higher order 
conserves better at propagation in an inhomogeneous 
medium. It is quite clear, because the higher the  
carrier frequency, the wider spectrum can have a 
modulating oscillation without any loss of properties of 
an analytic signal.7 The higher stability of the carrier in 
the central part of a beam rather than in  
the ring area may be explained by the power spectrum 
of the inhomogeneities in the refractive index of 
medium, what results in a stronger influence of  
large-scale inhomogeneities on the wave phase 
fluctuations. 

 
4. CONCLUSION 

 
The azimuth carrier frequency, given by the initial 

conditions, conserves at propagation of a light beam in 
vacuum. 

The higher the order of the azimuth carrier, the 
longer the path length where it conserves at 
propagation through an inhomogeneous medium. 

The azimuth carrier is present at a focal plane  
or in the spatial frequency domain for beams 

propagated both through vacuum and an 
inhomogeneous medium. 

The form of the focal spot from Hartmann sub-
aperture with the real zero is determined mainly by 
first terms of a two-dimensional power series of the 
wave function in the neighborhood of this zero point. 
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