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We consider in this paper, based on the apparatus of radiative transfer 

equations, the problem on radiation propagation through the random scattering 

media.  The exact solution of a one-dimensional radiative transfer equation has 

been obtained for such a medium.  Analytical expressions for the signal propagated 

through the medium and the backscattering signal are obtained for special cases of 

continuous and pulsed signal and a homogeneous medium.  Analysis and 

interpretation of the results in applications to remote sounding of the distributed 

formations, stratified media, and so on, are presented. 
 

INTRODUCTION 
 

Nowadays, in connection with the needs of remote 
sounding of spatially distributed formations, an increased 
interest is observed in theoretical investigations into the 
propagation of signals through scattering media and in 
calculation of the backscattering signal.  It is of great 
importance for the development of algorithms for the 
medium diagnostics  to explain the dependence of 
backscattering signal on the parameters of a medium 
sounded.  The radiative transfer equations provide 
mathematical tools for solving that type of problems.  
Many publications can be found in the literature that 
deal with the transfer equations, among which we will 
mention the monographs we cite as Refs. 1 to 5.  
However, only few  solutions have so far been derived in 
an explicit analytical form because of a high complexity 
of this problem. At the same, for the case of a narrow 
laser beam propagation through such media one may 
neglect  the scattering along the directions out of the 
beam and the problem reduces to solving a one-
dimensional radiative transfer equation that may be 
solved in a rigorous way.  In this paper the exact 
solutions of the one-dimensional transfer equation are 
presented for the cases of  homogeneous and piecewise 
inhomogeneous scattering media.  The explicit analytical 
expressions have been obtained, that describe the laser 
pulse deformation at propagation through a scattering 
medium along with the shape of a backscattering signal. 

 

1. SOLUTION OF A ONE-DIMENSIONAL 

TRANSFER EQUATION  
 

Let us consider a one-dimensional problem on the 
propagation of radiation through a scattering medium.  
Let the photons move along the axis z and do not 
undergo scattering outside the beam.  The photons may 
undergo absorption with the probability γ(z)dz, (where 
γ(z) is the absorption coefficient), when propagated along 
the path (z, z + dz), reflected with the probability σ(z)dz 

(σ(z) is the reflection coefficient), or survive with the 
probability 1 $ γ(z)dz $ σ(z)dz = 1 $ ε(z)dz (ε(z) is the 
extinction coefficient).  The situation with the one-
dimensional case is characterized by two functions: 
p(t, z) is the mean number of photons at the point z and 
at the moment t, that move along the direction of 
increasing z, and q(t, z) is the mean number of photons, 
that move backwards.  In this case the radiative transfer 
equation is presented by the following system of 
differential equations: 

1
V(z)

 
 ∂p(t, z)

 

∂t  + 
 ∂p(t, z)

 

∂z  + ε(z) p(t, z) = 

= σ(z) q(t, z) + 
1

V(z)
 f(t, z), (1) 

1
V(z)

  

∂q(t, z) 

∂t  $  

∂q(t, z) 

∂z  + ε(z) q(t, z) = 

= σ(z) p(t, z) + 
1

V(z)
 g(t, z), (2) 

where f(t, z)dt is the mean number of the forward 
moving photons, created at the point z during the time dt 
by an external source (emitter); g(t, z)dt is similar 
number of photons moving backwards; and V(z) is the 
speed of photons. 

Let us suppose that the emitter is located at the  
point z = 0 and only generates the forward moving 
photons, that is, f(t, z) = δ(z)f(t), g(t, z) = 0, where 
f(t) is the function that characterizes the  shape and 

energy of a signal, δ(z) is Dirac delta function, i = $1.  
By making a Fourier transformation of Eqs. (1) and (2), 
we obtain 

ε∼(iω, z) P(iω, z) +  

∂P(iω, z) 

∂z  = 

= σ(z) Q(iω, z) + 
1
V

 F(iω) δ(z), (3) 
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ε∼(iω, z) Q(iω, z) $  

∂Q(iω, z) 

∂z  = σ(z) P(iω, z), (4) 

where 

ε∼(iω, z) = 
iω

V(z)
 + ε(z);  

P(iω, z) =⌡⌠ p(t, z) e$iωt dt;  

F(iω) = ⌡⌠ f(t) e$iωt dt. 

 

As follows from the system of equations  (Eqs. (3) 
and (4)), the function P(iω, z) has the only break at 
the point z = 0, while the function Q(iω, z) is 
continuous. 

Let us note that within the homogeneous 
(ε = const, σ = const) intervals with no emitters the 
functions P and Q satisfy one and the same simple 
equation: 

∂2P
∂z2  $ λ2 p  = 0, (5) 

where λ2 = ε∼2 $ σ2. 
The solution of this equation has the following 

view: 

P = A eλz + B e$λz   (Re λ > 0), (6) 

where A and B are arbitrary constants. 
Let us consider the piecewise inhomogeneous 

medium with the internal interfaces (N is the number 
of the interfaces): a0 = 0 < a1 < a2 <...<aN.  Let the 
medium be homogeneous within the intervals (an, an+1), 
(an+1, ∞) with the parameters there being ε(z) = const =  

= εn+1, σ(z) = const = σn+1, V(z) = const = Vn+1. 
According to Eq. (5) we have that within these 
segments 

P(iω, z) = An+1 e
λn+1

 

z
 + Bn+1 e

$λn+1
 

z
; 

Q(iω, z) = Cn+1 e
λn+1

 

z
 + Dn+1 e

$λn+1
 

z
. (7) 

 

With the account of Eq. (4) we obtain 

An+1 e
λn+1

 

z
 + Bn+1 e

$λn+1
 

z
 = 

= 

ε∼n+1 $ λn+1

σn+1
 Cn+1 e

λn+1
 

z
 + 

ε∼n+1 + λn+1

σn+1
 Dn+1 e

$λn+1
 

z
, 

An+1 = 
ε∼n+1 $ λn+1

σn+1
 Cn+1 = 

σn+1 

ε∼n+1 + λn+1

 Cn+1, 

Bn+1 = 
ε∼n+1 + λn+1

σn+1
 Dn+1 = 

σn+1 

ε∼n+1 $ λn+1

 Dn+1. (8) 

Since the functions P(iω, z) and Q(iω, t) are 
continuous at the points a1, a2, ..., aN, we have the 
following relations: 

Cn+1 e
λn+1

 

an
 + Dn+1 e$λn+1

 

an
 = Cn e

λn
 

an
 + Dn e

$λn an,  (9) 

Cn+1 
σn+1 

ε∼n+1 + λn+1

 e
λn+1 an + Dn+1 

σn+1 

ε∼n+1 $ λn+1

 e
$λn+1 an = 

= Cn 
σn 

ε∼n + λn

 e
λn an + Dn 

σn 

ε∼n $ λn

 e$λn an. (10) 

 

Using matrix designations, we can write these 
relations in the following form: 

⎝
⎜
⎛

⎠
⎟
⎞

 

σ
 

n+1
e
λn+1 an

 

ε∼n+1 + λn+1

 e
λ
n+1 an

 

σ
 

n+1

e$λn+1 an
 

ε∼n+1 $ λn+1

 e
$λn+1 an

  

⎝
⎛

⎠
⎞Cn+1

Dn+1

 = 

= 
⎝
⎜
⎛

⎠
⎟
⎞

 

σ
 

n

e
λn an

 

ε∼n + λn

 e
λn an

 
σ

 

n

e
$λn an

 

ε∼n $ λn

 e
$λn an

  
⎝
⎛

⎠
⎞Cn

Dn

 . (11) 

Assuming that  

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞C

∼
n

D
∼

n

 = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 1

σ
 

n

ε∼n + λn

σ
 

n

ε∼n $ λn

 

⎝
⎜
⎛

⎠
⎟
⎞e

λn an$1

0

0 e
$λn an$1

 

⎝
⎛

⎠
⎞Cn

Dn

 ,  (12) 

Eq. (11) can be reduced to the following view: 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞C

∼
n+1

D
∼

n+1

 = 
1
2
 

⎩⎪
⎨
⎪⎧

 e
λn

 Δan
 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ 

ε∼n 

λn

 + 1 $  
σn 

λn

 
σn 

λn

$  
ε∼n 

λn

 + 1

 + 

+ 

⎭⎪
⎬
⎪⎫

 e
$λn

 Δan
  

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞$ 

 

ε∼n
 

λn

 + 1  

σn
 

λn

$ 

 

σn
 

λn

 

ε∼n
 

λn

 + 1

 

⎝
⎜
⎛

⎠
⎟
⎞C

∼
n

D
∼

n

 = gn* 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞C

∼
n

D
∼

n

 , 

where Δan = an $ an$1.; 

gn = 

⎩
⎨
⎧
e
λn

 Δan
 

⎝
⎛

⎠
⎞xn

yn

(xn, $yn) + e
$λn

 Δan
 

⎭
⎬
⎫

⎝
⎛

⎠
⎞yn

xn

 ($yn, xn)  = 

= ∑
θ = ±1

 e
θλn Δan

 

⎝
⎜
⎛

⎠
⎟
⎞

un + θνn

2

un $ θνn

2

 ⎝
⎛

⎠
⎞

 

νn +
 
θun

2
, 

νn $
 
θun

2
  .  (13) 

Here, the following designations are used: 

xn = 
1
2
 ⎝
⎜
⎛

⎠
⎟
⎞ε∼n + σn

λn

 + 
ε∼n $ σn

λn

  = 
un + νn

2
 ; 

yn = 

1
2
 ⎝
⎜
⎛

⎠
⎟
⎞ε∼n + σn

λn

 $ 

ε∼n $ σn

λn

  = 

un $ νn

2
 , (14) 

where 

un = 
ε∼n + σn

λn

 ; νn = 
ε∼n $ σn

λn

 = 
1
un

 . 
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As a result one may write that  

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞C

∼
N+1

D
∼

N+1

 = o
n=1

N

 gn 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞C

∼
1

D
∼

1

 . 

Using Eq. (13), we obtain 

o
n=1

N

 gn = ∑
θ1, θ2, ..., θN = ±1

       en=1

N

∑ θ
n
λ
n
Δa

n

 × 

× o
n = 2

N

 
1
2
 (un$1 νn + θn θn$1 νn$1 un) × 

× 

⎝
⎜
⎛

⎠
⎟
⎞

uN + θNνN

2

uN $ θNνN

2

 ⎝
⎛

⎠
⎞ 

ν1 + θ1u1

2
, 

ν1 $ θ1u1

2
  . 

In the final result we obtain 

CN+1 = 
 σN+1 

2λN+1
 e

$λ
N+1 

a
N ∑

θ1, θ2, ..., θN = ±1

       en=1

N

∑ θ
n
λ
n
Δa

n

 × 

× o
n=2

N

 
1
2
 (un$1 νn + θn θn$1 νn$1 un) × 

× 

1
2
 
νN+1 uN + θN uN+1 νN

uN+1 $ νN+1
 × 

× 

⎝
⎜
⎛

⎠
⎟
⎞

 

⎣
⎢
⎡

⎦
⎥
⎤1 + θ1

u1 + ν1
 

 σ1 

ε∼ + λ1

 C1 + 

⎣
⎢
⎡

⎦
⎥
⎤1 $ θ1

u1 $ ν1
 

 σ1 

ε∼ $ λ1

 D1  .  (15) 

To determine D1, we make use of the following 
considerations. It is obvious that 

P(iω, z) = 

⎩⎪
⎨
⎪⎧

ε∼1 $ λ1

σ1
 C0 eλ1z, $∞ < z ≤  0,

ε∼1 $ λ1

σ1
 C1 eλ1 z

 + 

ε∼1 + λ1

σ1
 D1 e$λ1 z ,   0  ≤ z ≤ a1.

 

At the point z = 0, P(iω, z) undergoes a break 
that amounts to F(iω)/V1.  From that we obtain 

(q 1 $ q 0) 
ε∼1 $ λ1

σ1
 + D1 

ε∼1 + λ1

σ1
 = 

1
V1

 F(iω). 

Then 

Q(iω, z) = 
⎩⎪
⎨
⎪⎧ C0 e

λ1z, $∞ < z ≤ 0,

C1 e
λ1z + D1 e

$λ1 z, 0 ≤ z ≤ a1 .
 

The function Q(iω, z) is continuous at the point 
z = 0.  Therefore C1 $ C0 + D1 = 0.  Hence 

D1 = σ1/(2 λ1 V1) F(iω) . (16) 

It is clear, from the physical point of view, that on 

the interval (aN, ∞) the function Q(iω, z) = DN+1e
$λN+1, 

i.e., CN+1 = 0.  As a consequence, we obtain from 
Eq. (15) the following equation for determining C1: 

0 = ∑
θ1, θ2, ..., θN = ±1

 en=1

N

∑ θ
n
λ
n
Δa

n

 o
n=2

N+1

(un$1 νn + θn θn$1 νn$1 un) × 

× ⎝
⎛

⎠
⎞1 + θ1

u1 + ν1
 C1 + 

1 $ θ1

u1 $ V1
 

σ1 
2λ1 V1

 F(iω)  . 

Hence 
 

 

q 1 = $ 
u1 + ν1

u1 $ ν1
 

σ1 
2λ1 V1

 F(iω) e$2λ1 Δa1 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1 $ 2 V1u2 

∑
θ2, ..., θN = 

±1

      en=2

N

∑ θ
n
λ
n
Δa

n

 o
n=3

N+1

 (un$1 νn +
 
θn θn$1 νn$1 un)

∑
θ2, ..., θN = ±1

      en=2

N

∑ θ
n
λ
n
Δa

n

 o
n=2

N+1

 (un$1 νn + θn θn$1 νn$1 un)

 = 

= $ 
ε∼1 + λ1

σ1
  

σ1
 

2λ1 V1
 F(iω) e

$2λ
1 
Δa

1 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1 $ 2 
ε∼2 + σ2

λ2
 

∑
θ2, ..., θN =

 
±1

     
 
en=2

N

∑ θ
n
λ
n
Δa

n

 θ2
 
o
n=3

N+1

 ⎝
⎜
⎛

⎠
⎟
⎞ε∼n$1 + σn$1

λn$1
 + θn θn$1 

ε∼n + σn

λn

∑
θ2, ..., θN=±1

      en=2

N

∑ θ
n
λ
n
Δa

n

 o
n=2

N+1

 ⎝
⎜
⎛

⎠
⎟
⎞ε∼n$1 + σn$1

λn$1
 + θn θn$1 

ε∼n + σn

λn

  . 

 (17) 
 
The backscattered signal Q at the point z = 0 is as 

follows: 

Q(iω, 0) = q 0 = q 1 + D1. 

Thus, C1 and D1 are found. 

It is of a primary interest to determine the 
backscattered signal at the point of the emitter 
location, i.e., at z = 0. Obviously, the backscattered 
signal at the point z = 0 is as follows: 
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q 0 = q 1 + D1 = σ1/(2λ1 V1) F(iω) 

⎩⎪
⎨
⎪⎧

1

 

+

 

ε∼1 + λ1

σ1
 exp {$2 λ1 Δa1}

 

$

 

2 ⎝
⎜
⎛

⎠
⎟
⎞ε∼1 + λ1

σ1
 
ε∼1 + σ1

λ1
 exp {$2 λ1 Δa1}× 

 × 

∑
θ2, ..., θN = ±1

    exp 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
n=2

N

  θn λn Δan  o
n=3

N+1

 ⎝
⎜
⎛

⎠
⎟
⎞ε∼n$1 + σn$1

λn$1
 + θn θn$1 

ε∼n + σn

λn

∑
θ2, ..., θN = ±1

    exp
 ⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
n=2

N

  θn λn Δan  o
n=2

N+1

 ⎝
⎜
⎛

⎠
⎟
⎞ε∼n$1 + σn$1

λn$1
 + θn θn$1 

ε∼n + σn

λn ⎭⎪
⎬
⎪⎫
 

 

. (18) 

 

It is assumed therewith that θ1 = θN+1 = 1. 
 

2. ANALYSIS OF THE SOLUTION  
 

2.1. For the case of a steady-state signal, the equation for C0 is as follows: 

q 0(t, z = 0) = q 0(t) = q 0 = 
 σ1 

2λ1 V1
 f 

⎩
⎨
⎧

1 + 
ε1 + λ1

σ1
 exp {$2 λ1 Δa1}

 

$

 

2 
ε1 + λ1

σ1
 
ε1 + σ1

λ1
 exp {$2 λ1 Δa1}× 

 × 

⎭⎪
⎬
⎪⎫∑

θ2, ..., θN=±1

    exp
 ⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
n=2

N

  θn λn Δan  o
n=3

N+1

 ⎝
⎛

⎠
⎞εn$1 + σn$1

λn$1
 + θn θn$1 

εn + σn

λn

∑
θ2, ..., θN=±1

    exp
 ⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
n=2

N

  θn λn Δan  o
n=2

N+1

 ⎝
⎛

⎠
⎞εn$1 + σn$1

λn$1
 + θn θn$1 

εn + σn

λn

  . (19) 

Let us introduce the following designation: 

 
 q 0 

f/(2V1)
 = Ĉ0 . (20) 

 

Consider now the case of the 3-layer medium. According to Eq. (19) at N = 3, we obtain 
 

Ĉ0 = 
 σ1 
λ1

 
⎩
⎨
⎧
1 + 

ε1 + λ1

σ1
 exp {$2 λ1 Δa1} $ 2 

ε1 + λ1

σ1
 
ε1 + σ1

λ1
 exp {$2 λ1 Δa1} × 

× 

exp {λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3
 ×

exp {λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 + 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3
 ×

 

× ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 + 

ε4 + σ4

λ4
 + exp {λ2(a2 $ a1) $ λ3(a3 $ a2)} ×

× ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 + 

ε4 + σ4

λ4
 + exp {λ2(a2 $ a1) $ λ3(a3 $ a2)} ×

 

× ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 $ 

ε4 + σ4

λ4
 +

× ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 + 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 $ 

ε4 + σ4

λ4
 +

 

+ exp {$λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 ×

+ exp {$λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 $ 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 ×
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× ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 + 

ε4 + σ4

λ4
 + exp {$λ2(a2 $ a1) $ λ3(a3 $ a2)} ×

× ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 + 

ε4 + σ4

λ4
 + exp {$λ2(a2 $ a1) + λ3(a3 $ a2)} ×

 

 

× ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3
 ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 $ 

ε4 + σ4

λ4

× ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 $ 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3
 ⎝
⎛

⎠
⎞ε3 + σ3

λ3
 $ 

ε4 + σ4

λ4

 . (21) 

 

At 
ε3 + σ3

λ3
 <<   

ε4 + σ4

λ4
 the terms containing the factor (ε4 + σ4)/λ4 can be canceled, and Eq. (21) takes a 

simpler form 

Ĉ0 = 
 σ1 
λ1

 
⎩
⎨
⎧
1 + 

ε1 + λ1

σ1
 exp {$2 λ1 Δa1} $ 2 

ε1 + λ1

σ1
 
ε1 + σ1

λ1
 exp {$2 λ1 Δa1} × 

 × 

exp {λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3
 $

exp {λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 + 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3
 $

 

$ exp {λ2(a2 $ a1) $ λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 +

$ exp {λ2(a2 $ a1) $ λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 + 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 +

 

+ exp {$λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 $

+ exp {$λ2(a2 $ a1) + λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 $ 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 $ 

ε3 + σ3

λ3
 $

 

 

$ exp {$λ2(a2 $ a1) $ λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3

$ exp {$λ2(a2 $ a1) $ λ3(a3 $ a2)} ⎝
⎛

⎠
⎞ε1 + σ1

λ1
 $ 

ε2 + σ2

λ2
 ⎝
⎛

⎠
⎞ε2 + σ2

λ2
 + 

ε3 + σ3

λ3

 . (22) 

 

The results calculated by Eq. (22) using different 
parameters εi and σi, are shown in Fig. 1. These results 
allow one, in  particular, to draw a conclusion, that an 
object with the characteristics ε4 and σ4 may be better 
seen from the side of the absorbing (œblackB) medium 
with the characteristics ε2 and σ2 than in the opposite 
direction, given certain combination of parameters of 
the non-mixed layers of different media and that the 
medium with ε3 and σ3 characteristics is a reflective 
(œwhiteB) medium. 

The above obtained dependences make up the 
theoretical basis for the developments on creating 
stratified media that have preset characteristics that 
may be controlled. 

Let us also present the view of the direct and 
reflected continuous signal in the case of a 
homogeneous medium: 

P(t, z) = 
1

2V
 f ⎝
⎛

⎠
⎞ε

λ + sign(z)  exp($λ |z| ); 

Q(t, z) = 
1

2V
 f 

σ
λ exp($λ |z| ), 

Q(t, z = 0) =  

f 

2V
 
σ
λ. (23) 

 
 

FIG. 1. The dependence of Ĉ on σ2: σ3 = 0.8⋅10$2 m$1 

(1); σ3 = 0.2⋅10$2 m$1 (2); for a1 = 1000 m, a2 = 
= 1020 m, a3 = 1040 m, ε3 = 10$4

 m$1; σ1 = 0.5⋅10$1
 m$1; 

and ε2 = ε3 = 10$2 m$1. 
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2.2. In the case of a non-stationary signal a 
transmitter emits a δ-pulse, that means that f(t) = fδ(t) 
and f(iω) = const = f. 

In the case of a homogeneous medium one can 
calculate the inverse Fourier transform 

P(t, z) =  

f 

V
 e$ε |z| δ ⎝

⎛
⎠
⎞t $ 

z
V

 η(z) + 
1
2

 fσ 
Vt + z
Vt $ z

 × 

× I1( )σ (Vt)2 $ z2  e$εVt η(Vt $ |z|);  (24) 

Q(t, z) = 

1
2

 fσ e$εVt
 I0( )σ (Vt)2

 $ z2 η(Vt $ |z|), (25) 

where I1(...) and I0(...) are the modified Bessel 
functions of the first kind and the first and zero order, 
respectively. 

These are the exact solutions of a one-dimensional 
radiative transfer equation of the problem on pulse 
propagation through a homogeneous scattering medium. 

The backscattering signal received at the point 
z = 0 is as follows: 

Q(t, 0) = 
1
2
 fσ e$εVt I0(σVt)η(t). (26) 

Here η(t) is the unit-step function. 
Let us note that the direct (Eq. (4)) and backward 

(Eq. (25)) scattered signals fill the interval  
$ Vt < z < Vt, that is being extended with increasing t.  

Hence, the backward scattered signal is symmetrical 
relative to z = 0.  The calculated curve of the relative 
value of the direct signal P/Pmax distribution over z at 
an arbitrary moment is shown in Fig. 2. 

 

 
 

FIG. 2.  The dependence of P/Pmax on the distance  
z, (m), to the emitter at Vt = 40, a = 30 (1), 4 (2), 
3.5 (3), 3 (4), 2.5 (5), and 2 (6), a = σVt. 

 
It is worth noting the nonmonotonic behavior of 

the direct signal distribution that appears in the 
interval $Vt < z < Vt at large values of the reflection 
coefficient σ with the signal extrema being at the 
points inside the interval $Vt < z < Vt. 

 

 

 
 

FIG. 3.  The calculated results:  (a) dependence of Q(T, 0)/(f/2V) on a at b = 1.1 for k = 8 (1), 6 (2), 4 (3),  
2 (4), and 0 (5); (b) dependence of Q(T, 0)/(f/2V) on  a  at b = 4.4 for k = 4, 6, 8 (1), 2 (2), and 0 (3). 
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Although the above results have been obtained  
for total scattering, that is, with the allowance  
for all orders of multiple scattering, it is  
interesting to address the question on which  
order of scattering ought to be accounted for, or what 
role plays the account of one or other order of 
scattering, because that essentially determines the 
complexity of multidimensional models, and the bulk of 
the calculations needed.  Equation (26), or, better to 
say, its modification, allows one to answer this question 
in a more useful and simpler way than that in Ref. 5. 

Let T be the time during which the backscattered 
signal at the point z = 0 is recorded, then we obtain 

Q(T, 0) = 
1
2
 f 

1
V

 ⌡⌠
0

a

 e$bx I0(x) dx, (27) 

where a = σVT; b = ε/σ.  Having in mind that, 

I0(x) = ∑
k=0

∞

 
1

(k!)2 ⎝
⎛
⎠
⎞x

2

2k

, 

and at k = 0, the function Q(T, 0)⏐k = 0 describes  
the single scattering; at k = 2, Q(T, 0)⏐k = 2 describes 
the double scattering (that actually is the triple 
scattering from the common point of view).  Figure 3 
presents the calculated dependence Q(T, 0)/[f/(2V)] 
for a set of  the parameters a, b, and k. One can  

see from this figure that in the majority of  
cases presented by the parameter sets the account of 
third order of scattering is quite sufficient,  
and, moreover, in many cases the account for the 
double scattering provides quite good results.   
The above obtained results can be used when 
developing methods for sounding different media,  
as well as in the development of stratified  
non-mixing media that provide for optimal camouflage. 
The results may also be useful when analyzing the 
detectability of objects, observed through a scattering 
medium, synthesizing information media for the 
controlled screens, and so on. 
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