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Development of perturbations is analyzed for non-stationary interaction of 

two counterpropagating noncollinear light beams. Invariants of interaction are 

written down. Dependences of amplification increment on the perturbation 

frequency are derived. It is shown that noncollinearity of interaction enriches a 

range of spatial frequencies, at which the convective instability develops. The 

range of extended frequency spectrum is determined by the sign of self-action. 

 
1. INTRODUCTION 

 

The problem of phase conjugation in a four-wave 
interaction (PC-FWI) is widely studied in laser 
physics.1,2 It is connected, first of all, with the facts 
that PC is one of the most effective methods of 
compensation in real time for small-scale distortions of 
light beams caused by nonlinearity of the medium, and 
that for the IR-range PC with the help of FWI is the 
most efficient. At the same time it was impossible to 
attain under real conditions PC of high quality in FWI 
with simultaneous large amplification of the probe 
wave. It is primarily connected with such factors as 
self-action and transfer of energy of the interacting 
waves and inequality of amplitudes of the pump 
waves.1 

It should be noted that influence of 
noncollinearity of the interacting counterpropagating 
beams on the PC efficiency and quality was considered, 
as a rule, in the approximation of fixed pump-wave 
amplitudes. Phase conjugation of noncollinear beams 
was studied in Refs. 2 and 3 only for beams 
propagating in the same direction. The feasibility of 
mutual compensation for self-action, noncollinearity, 
and inequality of pump-wave amplitudes was 
demonstrated there. Meanwhile, an analysis of 
interaction in a nonlinear medium of two noncollinear 
beams, one of which, being oblique upon entering the 
medium, is then reflected from a screen, has shown that 
development of free oscillations of the beams’ 
parameters (for example, positions of their energy 
centers and angle of exit of the reflected beam from the 
nonlinear medium) is possible. Their reason consists in 
violation of Snell’s law of reflection because of complex 
nonlinear refraction of the incident beam on distributed 
lens, induced by the reflected beam, and refraction of 
the reflected beam on distributed lens, induced by the 
incident optical beam. 

In addition, it is also well known about the 
instability, arising in an interaction of 
counterpropagating light beams.1,6$10 For PC problems 
of a four-wave interaction of counterpropagating beams, 
influence of beam noncollinearity on an interaction 
pattern is of interest. Thus, the problem arises about a 
relationship among thresholds of instability of various 
physical natures. 

The present paper studies the influence of 
noncollinearity of two or four counterpropagating 
beams on their interaction pattern. 

 

2. BASIC EQUATIONS, STATEMENT OF THE 
PROBLEM, AND INVARIANTS 

 

Phase conjugation in a four-wave interaction of 
noncollinear beams is described in dimensionless 
variables by the following system of the equations: 

Lj Aj + i γj (Fsj + Fcj) = 0,  j = 1$4, (1) 

where Aj are the complex wave amplitudes normalized 
on the maximum amplitude; `1,2 are the pump wave 
amplitudes, `4 ≡ `back; `3 ≡ `sign; Lj is the linear 
operator specified by geometry of interaction and in our 
case has the form 

Lj = 
∂
∂t + νj 

∂
∂z + βj 

∂
∂x + iDj 

∂2

∂x2 ;  

t > 0, 0 < x < LX, 0 < z < LZ, (2) 

where t is the normalized time; z is the longitudinal 
coordinate measured in diffraction length, Ld = 2ka2; a 
is the initial beam radius; k is the wave number; x is 
the transverse coordinate normalized on a; β is the 
angle between the incident beam propagation direction 
upon entering the nonlinear medium (z = 0) and the 
axis z and is measured in units of diffraction beam 
divergence in a linear medium βd = 0.5ka; Dj is the 
diffraction coefficient; νj takes into account the  
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direction of propagation of the jth beam (ν1,3 = 1, 
ν2,4 = −1); LX,Z are the transverse and longitudinal 
dimensions of the interaction zone, respectively. 
Because we are interested in non-stationary effects, in 
the present paper we restrict ourselves by a case of 
plane geometry (coordinates (u, Z)). 

Terms Fsj in Eq. (1) of the form  

Fsj = Aj ( ∑
m=1

4

 ⎢Am ⎪
2 $ 0.5 ⎢Aj ⎢

2), j = 1$4, (3) 

describe self-action of a light beam under conditions of 
equality (absence of dispersion) of permittivity gratings 
in a transparent medium, and 

Fcj = 
∂

∂A*
j

 (A3 A4 A*
1 A*

2 + A1 A2 A*
3 A*

4),   j = 1$4, (4) 

describes generation of the jth wave in a nondispersive 
medium. 

In our case, the account of time in Eq. (1) is 
caused by non-stationary character of interaction. It is 
of fundamental importance here, because it allows one 
to describe adequately the processes occurring in the 
system. 

Boundary and initial conditions for system (1) 
have the forms 

Aj(z, x, t = 0) = 0,   j = 1$4, 

Aj(z = 0, x, t) = (1 $ exp ($ τ t) exp {$ (x $ xcj)
2},   j = 1, 3; 

Aj(z = LZ, x, t) = R0 Aj$1(z = LZ, x, t) × 

× exp (i (x $ xcj)
2/Rm),   j = 2, 4. (5) 

Here, .“j describes the initial position of the jth 
beam center, Rm is the radius of curvature of the 
reflecting mirror, R0 is its amplitude reflectance, and τ 
is the relaxation time. 

In the stationary regime (∂/∂t = 0 in Eqs. (2)) 
the system (1) has some invariants, which were used by 
us to control the correctness of results of numerical 
modeling. 

Thus, during interaction the total power of light 
beams is conserved 

∑
j=1

4

 Pj = const; 

Pj = ∑
0

LX

 ⎢Aj ⎢
2 dx. (6) 

A difference between a sum of powers of the first 
and third beams and a sum of powers of the second and 
fourth beams is also conserved along the Z axis: 

∂
∂z (P1,3 $ P2,4) = 0. (7) 

According to the aim of the present paper, we 
consider at first the influence of noncollinearity on an 
interaction of two counterpropagating beams. 

 

3. CONDITIONS OF INSTABILITY 
DEVELOPMENT IN AN INTERACTION OF TWO 

NONCOLLINEAR COUNTERPROPAGATING 
BEAMS 

 

3.1. Statement of the problem and its solution for a 
system of two counterpropagating noncollinear beams 

 

The basic problem of phase conjugation  is creation 
of conditions, at which the conjugated wave will be of 
the highest quality. It is well known1 that to obtain 
such conditions in FWI, an optically homogeneous 
working medium and reference waves homogeneous 
throughout the interaction volume are required. At the 
same time, in order that PC-FWI had high energy 
efficiency, the intensity of reference waves should be 
rather large. However, smooth waves of large intensity 
are unstable in nonlinear reactive media. Therefore, 
instability study in such systems is of great interest at 
the moment not only for PC. Thus, for example, in 
Refs. 1 and 8 parametric wave generation and 
amplification were examined, in Ref. 7 oscillations of 
the beam characteristics in a system of 
counterpropagating beams were studied, in Ref. 9 
modulation instability caused by phase cross-
modulation of picosecond laser pulses was investigated, 
and in Ref. 10 instability in a system of two collinear 
beams propagating in opposite directions through a 
medium with the Kerr nonlinearity was investigated 
with the account of relaxation processes. 

By analogy to the method suggested in Ref. 1, 
where instability of two collinear beams propagating in 
opposite directions through a nonlinear reactive medium 
was investigated, we derive conditions of instability 
development for noncollinear beams. The process is 
described by the following system of the dimensionless 
equations: 

∂A+

∂z  + β 
∂A+

∂x  + iD 
∂2

A+

∂x2  = $iγ (0.5 ⎢A+ ⎢
2 + ⎢A$ ⎢

2) A+, 

∂A$

∂z  $ β 
∂A$

∂x  $ iD 
∂2

A$

∂x2  = iγ (0.5 ⎢A$ ⎢
2 + ⎢A+ ⎢

2)A$, (8) 

where A+ is the forward wave amplitude, and `− is the 
backward wave amplitude. The other parameters are 
specified above. We emphasize that in the examined 
case each wave is incident independently on the 
nonlinear medium from the opposite sides, i.e. in the 
cross sections z = 0 and z = Lz, respectively. 

For the further analysis it is convenient to 

introduce new functions `± = A
∼
± exp[(iβx)/(2D)]. 

Then the equations (8) can be written down as 

∂A
∼

+

∂z  + 
iβ2

4D
 A
∼

+ + iD 
∂2

A
∼

+

∂x2  = $iγ (0.5 ⎢A
∼

+ ⎢
2 + ⎢A

∼
$ ⎢

2) A
∼

+, 

∂A
∼

$

∂z  $ 
iβ2

4D
 A
∼

$ $ iD 
∂2

A
∼

$

∂x2  = iγ (0.5 ⎢A
∼

$ ⎢
2 + ⎢A

∼
+ ⎢

2) A
∼

$.(9) 
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3.2. Equations for the instability increments 
 
We shall search for the solution of Eq. (9) as 

perturbation of plane waves: 

A
∼

+ = A0
+ exp ($ 0.5 iγ (I+ + 2I$) z) $ (1 + u(x, z)), 

A
∼

$ = A0
$ exp (0.5 iγ (I$ + 2I+) z) + (1 + v(x, z)), (10) 

where `
0
± are the wave amplitudes upon entering the 

medium, I± = | `0
± |2, and u(x, z) and v(x, z) are 

perturbations (u, v << 1). 
Substituting Eq. (10) into Eq. (9) and linearizing 

the equation, we obtain in the first approximation on u 

and v the following equations for perturbations: 

∂u
∂z + iD 

∂
2

u

∂x
2 + 

iβ2

4D
 (u + 1) = 

= $ 0.5 iγ {I+ (u + u*) + 2I$ (v + v*)}, 

∂v
∂z $ iD 

∂2
v

∂x2 $ 
iβ2

4D
 (v + 1) = 

= 0.5 iγ {2I+ (u + u*) + I$ (v + v*)}, 

and pair of the conjugated equations. Further, assuming 
that 

u = u∼ + C1, u* = u∼* + C2; 

v = v∼ + C3, v* = v∼* + C4, 

where qi are the coefficients determined under 
assumption of system homogeneity and having the form 

C1,2 = $ 
iβ2 (iβ2 $ 4iγ I$ D)

$β4 $ 4γDβ2
I+ $ 4γDβ2

I$ + 48γ 

2
D

2
I+I$

 , 

C3,4 = $ 
iβ2 (iβ2 $ 4iγ I+ D)

$β4 $ 4γDβ2
I+ $ 4γDβ2

I$ + 48γ2D2
I+I$

 , 

we obtain 

∂u∼

∂z + iD 
∂
2

u∼

∂x
2 + 

iβ2

4D
 u∼ = $ 0.5 iγ { I+ (u

∼
 + u∼*) + 

+ 2 I$ (v
∼
 + v∼*)}, (11) 

∂v∼

∂z  $ iD 
∂
2

v∼

∂x
2 $ 

ib
2

4D v∼ = 0.5 iγ {2I+ (u
∼
 + u∼*) + I$ (v

∼
 + v∼*)}, 

and pair of the conjugated equations. 
To study development of perturbations, we shall 

search for the solution of Eq. (11) in the form 

u∼(x, z) = U0 exp (iqx + iμz + iϕ); 

v
∼
(x, z) = V0 exp (iqx + iμz + iϕ); 

u∼*(x, z) = U*
0 exp (iqx + iμz + iϕ); (12) 

v
∼
*(x, z) = V*

0 exp (iqx + iμz + iϕ). 

Here, U0 = (p + ih) and V0 = (m + in) are the perturbation 
amplitudes, μ is the instability increment, q is the 
transverse wave number, and ϕ is the initial phase. 

After simple transformations we derive from 
Eq. (11) the system of the equations for the 
perturbation amplitudes: 

iμU0 $ iq2
DU0 + 

iβ2

4D
 U0 = $0.5iγ {I+ (U0 + 

+ U*
0) + 2I$ (V0 + V*

0)}, 

iμV0 + iq2
DU0 $ 

iβ2

4D
 V0 = 0.5iγ {2I+ (U0 + 

+ U*
0) + I$ (V0 + V*

0)}, 

iμU*
0 + iq2

DU*
0 $ 

iβ2

4D
 U*

0 = 0.5iγ {I+ (U0 + 

+ U*
0) + 2I$ (V0 + V*

0)}, 

iμV*
0 $ iq2

DV*
0 + 

iβ2

4D
 V*

0 = $0.5iγ {2I+ (U0 + 

+ U*
0) + I$ (V0 + V*

0)}. (13) 

We note that at μ = 0 from Eq. (11) it follows 
that for q2D = β2/(4D)  h and n are arbitrary 
(otherwise amplitudes are equal to zero), i.e. we deal 
with development of free oscillations of finite 
amplitude. Thus, beam noncollinearity results in 
existence of a free oscillation mode on a fixed spatial 
frequency q determined by β and D. 

Further, the transformation of Eq. (13) under 
condition q2D ≠ β2/(4D) yields the system 

⎩
⎨
⎧

⎭
⎬
⎫β2

4D
 + γI+ $ q2

D $ ⎝
⎛

⎠
⎞β2

4D
 $ q2

D

$1

μ2  p + 2γI$ m = 0, 
 

(14)
 

$ 2γI+ p $ 

⎩
⎨
⎧

⎭
⎬
⎫β2

4D
 + γI$ $ q2

D $ ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  

$1

μ2  m = 0, 

which at β = 0 transforms into the equations 
investigated in Ref. 1. 

The condition of existence of nontrivial solution 
for homogeneous system (12) is equality to zero of its 
determinant: 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫β2

4D
 + γI+ $ q2

D $ ⎝
⎛

⎠
⎞β2

4D
 $ q2

D

$1

μ2  2γI$ m $

$2γI+ $ 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫β2

4D
 + γI$ $ q2

D $ ⎝
⎛

⎠
⎞β2

4D
 $ q2

D

$1

μ2

  = 0. 

 (15) 

In the particular case of I+ = I$ = I, from Eq. (15) 
the equation of the fourth degree for the increment μ 
follows: 

 

$ 

⎩
⎨
⎧

⎭
⎬
⎫β2

4D
 + γ I $ q2

D $ ⎝
⎛

⎠
⎞β2

4D
 $ q2

D

$1

μ2
2

= 4γ 

2
I
2. (16) 

For a self-focusing medium (γ > 0), Eq. (16) is 
equivalent to a pair of the equations 
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μ2 = ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  

2

 + 3γI ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  , 

(17)

 

μ2 = ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  

2

 $ γI ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  , 

whereas for a defocusing medium (γ < 0), it is 
equivalent to a pair of the equations 

μ2 = ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  

2

 $ 3⏐γ⏐I ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  , 

μ2 = ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  

2

 + ⏐γ⏐I ⎝
⎛

⎠
⎞β2

4D
 $ q2

D  . (18) 

 

3.3.1. Propagation of beams  
through a focusing medium (γ > 0) 

 
For convenience of the analysis of noise 

development, we present the dependences 

μ2 = x2 $ ax; 

x = q2 D $ 
β2

4D
;   a = 3γI, $ γI (19) 

graphically (Fig. 1=). 
From Fig. 1a existence of two regions of 

instability development can be seen with the values 
of the parameters lying below the X axis. 
Noncollinearity of interaction is manifested, first, 
through occurrence of an additional range of spatial 
frequencies for which the noise can develop. Second, 
it shifts the range of spatial frequencies of absolute 
instability toward larger frequencies. In general, the 

minimum frequency q 2
min is determined by the angle 

of light beam incidence on the nonlinear medium and 
the initial beam power. On the basis of Fig. 1= we 
can write down the total range of spatial frequencies 

q2 = 

⎩
⎪
⎨
⎪
⎧⎝
⎜
⎛

⎠
⎟
⎞

0; 
β2

4D2  , β2 < 4γID,

⎝
⎜
⎛

⎠
⎟
⎞β2

4D2 $ 

γI
D

 ; 

β2

4D2  , 

β2

4D2 ≠ q2
D, β2

 > 4γID,

⎝
⎜
⎛

⎠
⎟
⎞β2

4D2 ; 
β2

4D2 + 
3γI
D

 , 
β2

4D2 ≠ q
2
D.

 (20) 

We note that the maximum instability increment 
for different regions differs 3 times and is determined 
by the initial beam power. 

 
 

FIG. 1. Dependence of the square increment of noise 
amplification from the parameter q2D − β2/(4D) in 
an interaction of light beams in self-focusing (à) and 
defocusing (b) media for a = 3γI (solid curve) and 
−γI (dashed curve). 

 
3.3.2. Propagation of beams through a 

defocusing medium (γ < 0) 
 
Similar to Fig. 1a, Fig. 1b has been drawn for a 

defocusing medium. It illustrates analogous 
dependences. The basic difference from self-focusing 
medium consists in change of the region of spatial 
frequencies for which the maximum amplification is 
attained; moreover, under certain conditions imposed 
on the angle of interaction the spectral range for the 
self-focusing medium can become not only wider, but 
also narrower than that for the defocusing medium. The 
total range of frequencies of instability development is 
defined as follows: 

q2 = 

⎩
⎪
⎨
⎪
⎧⎝
⎜
⎛

⎠
⎟
⎞

0; 
β2

4D2  , β2 < 12⏐γ⏐ID,

⎝
⎜
⎛

⎠
⎟
⎞β2

4D2 $ 
3⏐γ⏐I

D
 ; 

β2

4D2  , 

β2

4D2 ≠ q2
D, β2>12⏐γ⏐ID,

⎝
⎜
⎛

⎠
⎟
⎞β2

4D2 ; 
β2

4D2 + 
⏐γ⏐I

D
 , 

β2

4D2 ≠ q
2
D.

  

 (21) 
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In this case, the perturbations will grow most 
fast  in the range of frequencies 0 < q < β/2D, i.e. for 

smaller values of the wave vectors in comparison with 

collinear beams. 
 

4. CONCLUSIONS 
 

Summarizing our results, we can conclude that 
noncollinearity of interacting beams expands the 
spectral range of instability development and changes 
the range of maximum amplification. The enrichment of 
the spectral range depends on the sign of self-action. In 
a case of defocusing in an interaction of noncollinear 
beams, the largest amplification increment is reached at 
frequencies, at which the instability is not realized in 
an interaction of collinear beams.  
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