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An instrumental realization of the Newton iteration method is proposed for a 

solution of the problem of modal reconstruction and compensation for angular 

aberrations of a segmented mirror using functionals of the extended source image.  

Some results of numerical modeling are presented for the mirror comprising six 

segments with consideration for the measurement noise. 
 

We consider an adaptive optical system (AOS) 
with a mirror comprising n segments in which the 
wave-front (WF) aberration function Φ(ξ, η) at the 
aperture is represented by a finite series in a linearly 
independent system of functions {Φk(ξ, η)} with 
sufficient accuracy, namely, 
 

Φ(ξ, η) = ∑
k=1

N

 ζk Φk(ξ, η) ,  (1) 

 

where ζ = (ζ1, ζ2, ..., ζN) is the unknown mode vector.  
For the linearly independent system of functions we 
used piecewise-linear functions for which the aberration 
function within the kth segment can be represented as 
 

Φk(ξ, η) = (αk + βk(ξ $ ξk) + 
 

+ γk(η $ ηk)) δ(ξ $ ξk, η $ ηk) , 
 

where (ξk, ηk) = rk are the coordinates of the center of 
the kth segment; βk, γk specify the local WF tilts 
(angular aberrations normalized by the ratio (λ/a)); λ 
is the wavelength; a is the characteristic aperture size 
radius. 

It is assumed that the AOS compensates for the 
mode vector ζ by means of the control vector 
ζu = (ζu1, ζu2, ..., ζuN).  In this case, the control 
problem is reduced to finding of the control for which 
ζ $ ζu → 0. 

The equation for the control vector of a point 
source has the form 
 

H(f, z, ζu) = J(f, z, ζ) ,  (2) 
 

where H(f, z, ζu) is the optical transfer function 
(OTF) at the normalized spatial frequency f = (ξ, η) 
for the given defocusing z and the unknown mode 
vector ζ, and J(f, z, ζ) is the experimentally measured 
OTF.  Within a constant factor1 it can be written as 
 

H(f, z, ζ) = ⌡⌠
$∞

∞

 G(ξ + ξ′, η + η′) G0(ξ + ξ′, η + η′) × 

× G*(ξ′, η′) G*
0 (ξ′, η′) ∂r′ ,  (3) 

 

where G0(ξ, η) = P(ξ, η)�$iz(ξ + η)/2 is the pupil 
function comprising aberrations for the given 
defocusing z; P(ξ, η) is the characteristic pupil 

function; G = �i2πΦ(ξ, η) is the pupil function for the 
unknown aberration function; the symbol * denotes 

complex conjugation.  We solve Eq. (2) by the Newton 
method using the iteration scheme 
 

ςu
n+1 = ⎣

⎡
⎦
⎤∂H(f, z; ζu

n)
∂ζ

$1

× 

 

× ⎣
⎡

⎦
⎤J(f, z; ζ) $ H(f, z; ζu

n) + 
∂H(f, z; ζ)

∂ζ  ζu
n  . (4) 

 

Taking ζu
0 = 0 as an initial approximation, we 

obtain in the first control step 
 

ζu
1 = ⎣

⎡
⎦
⎤∂H(f, z; 0)

∂ζ

$1

 [J(f, z; ζ) $ H(f, z; 0)] ,  (5) 

 

which is immediately responded by the AOS.  In what 
follows the scheme given by Eq. (4) with the new 

function J(f, z; ζ $ ζu
1).  Then we proceed to the next 

iteration of the algorithm according to Eq. (5).  
Therefore, for the exact instrumental realization the 
scheme described by Eq. (4) is simplified and can be 
written as 
 

∂H(f, z; 0)
∂ζ  ζu

n+1 = ΔH(f, z; ζ) ,  (6) 

 

where ΔH(f, z; ζ) = J(f, z; ζ)$H(f, z; 0).  An 
instrumental realization of the algorithm described by 
Eq. (6) is considered in Ref. 2 in more detail.  It was 
demonstrated in Ref. 3 that the low-frequency OTF, 
whose magnitudes have meanings of normalized 
displacements in the pupil plane by the vector  
f = $(ξ, η) in Eq. (3), can be simplified and within a 
constant factor is represented by the formula 

H(f, z; ζ) = ∑
k=1

n

 e$i z f rk ei 2π fζk .  (7) 
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which can be used to analyze the matrix of derivatives. 

For low spatial frequencies the effect of phasing is 
insignificant and hence the modes of the segment in 
Eq. (7) are ζk = (βk, γk).  This means that for these 
frequencies the problems of adjusting and phasing can 
be considered separately.  In addition, for an extended 
source,3 the problem of adjusting for low spatial 
frequencies can be solved using the iterative scheme 
described by Eq. (6) with the help of the approximate 
inequality 
 
H(f, z; ζ) ≈ [H(f, 0; 0) + i2πSfζm] × 
 
× J(f, z; ζ)/J(f, 0; ζ) ,  (8) 
 
where S is the area of the pupil aperture; ζm is the 
mean WF tilt determined by the first-order moments of 
the image intensity distribution I(x, y) 
 

ζm = ⎝
⎛

⎠
⎞ 

M10
 

M00
,  

M01
 

M00
 ;  

 

Mst = ⌡⌠
$∞

∞

 ⌡⌠
$∞

∞

 I(x, y) xs yt dx dy, 

 
and can be measured.  It should be noted that the OTF 
given by Eq. (8) is measured in two planes z ≠ 0 and 
z = 0. 

In Refs. 2 and 3 the problem of finding of the 
mode vector was reduced to a solution of the system of 
equations 
 
∂H(

 

fj 

,
 

z; 0)

∂ζ  ζu
n+1 = ΔH (fj, z; ζ) , j = 1, N ,  (9) 

 
derived from Eq. (6) by means of selection of N 
frequencies that ensure the best conditioned matrix of 
derivatives whose elements can be easily derived from 
Eq. (7) 
 
1

i2π ⎩
⎨
⎧

⎭
⎬
⎫∂H(f, z; 0)

∂ζ
N×n

 = {fe$izfrk}
N×n

 . 

 
A problem of selection of the frequencies fj is 2N-

dimensional.  It was solved by the trial-and-error 
method which considerably complicated as the number 
of segments increased.  Its analytic solution was found 
only for a mirror with 3 segments. 

In the present paper, we suggest to fulfil the 
control ζu using the functionals of the point source 
image with the help of iterative scheme (6) in the 
following form: 

∂ℜj [H(f, z; 0)
∂ζ  ζu

n+1
 = ℜj [ΔH(f, z; ζ)] ,  j = 1, N , (10) 

 

where ℜj are the linear functionals of H which in its 
turn depends on the spatial frequency.  This method 
has allowed us to select the functionals ℜj so that the 
matrix of derivatives in Eq. (10) has predetermined 
properties.  In addition, the use of the entire range of 
low frequencies excludes the possibility that the 
selected frequencies fj necessary to fulfil the iteration 
scheme described by Eq. (9) are lacking.  The condition 
for the functional can be written in the form 
 

⌡⌠
θ(f)

 
∂H(f, z; 0)

∂ζk
 Fj(f) df = δjk , k = 1, N ,  (11) 

 

where δik is Kronecker’s delta symbol, and θ(f) 
specifies the low-frequency domain of integration.  
Here, the unknown scalar function Fj(f) has the form 
 

Fj(f) = ∑
s=1

n

 ⎣
⎡

⎦
⎤∂H(f, z; 0)

∂ζs

*
 λjs .  (12) 

 

Thus, the determination of the functional is 
reduced to the selection of the vector λj.  The 
substitution of Eq. (10) into Eq. (11) gives the system 
of equations for λj 
 

i 2 π ∑
s=1

n

 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
θ(f)

  
∂H(f, z; 0)

∂ζk
 ⎝
⎛

⎠
⎞∂H(f, z; 0)

∂ζs

*
 df  λjs = δjk , 

 

k = 1, n  , 

 

or 
 

j 2 π Γλj = cj ,  (13) 
 

where Γ is the n×n Hankel matrix with block elements 
 

Γks = ⌡⌠
θ(f)

 
∂H(f, z; 0)

∂ζk
 ⎣
⎡

⎦
⎤∂H(f, z; 0)

∂ζs

*
 df =  

 

= fT f ⌡⌠
θ(f)

 e
$i

 

z
 

f
 

(rk$rs) df ; 

 

cj is the vector with elements “jk = 1 and zero values of 
the remaining elements.  The components of the vector 
of derivatives dH(f, z; 0)/dζ are linearly independent 
functions and hence a solution of system (13) for λj, 
j = 1, N does exist.  This choice of the vectors cj 
specifies the unit matrix in the left side of Eq. (10), 
and the iterative scheme assumes the form 
 

ζu
n+1 =  ℜj [ΔH(f, z; ζ)] ,   j = 1, N .  (14) 
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The functionals selected in this way make the 
iteration scheme realizable.  It only remains to ensure 
its convergence.  This can be done by the trial-and-error 
method of selection of the optical system parameters.  
They are: the coordinate z of the image plane, the range 
of variation of measurable parameters, and the 
Tikhonov regularization parameter. 

We solved the system of equations (14) for 
functionals (11) with the domain of integration 
representing a circle with the radius ⏐f⏐ = 0.15 for 
aberration modes of the order w = 0.64 and defocusing 
z = 5.  In the normalized coordinates, accepted by us, 
w = 0.61 corresponds to the displacement of the central 
ray of the segment by the Airy circle radius.  The 
initial mode distribution was within ± w. 

The algorithm for the segmented mirror 
adjustment was modeled under assumption that, for 
point source, J(f, z; ζ) had been measured in one plane 
z = 0 of the domain θ(f).  It had been measured in the 
planes z ≠ 0 and z = 0 for an extended unknown source.  
The ratio J(f, z; ζ)/J(f, 0; ζ) for system (9) was 
modeled as a distorted variant of the ratio 
H(f, z; ζ)/H(f, 0; ζ).  The noise was modeled as a 
normal random variable with a given standard 
deviation for which the maximum error in calculating ζ 
by the scheme given by Eq. (15) did not exceed 5% of 
the maximum coordinate ⏐ζ⏐ = w. 

Figure 1 shows the norms ║ζs║/║ζmax║ of 
variations of the vector of corrected WF tilts for a 
mirror with 6 segments.  Curves 1 and 2 illustrate the 
convergence of the algorithm for point and extended 
sources, respectively.  It can be seen that the iterative 
process converges to a certain constant rather than to  
 

zero.  This algorithm compensates only the WF 
aberrations that comprise only low-frequency 
constituents.  This is a consequence of the fact that the 
OTF was measured only at low frequencies.  Curves 3 
and 4 illustrate the iterative process when the 
measurements noise is taken into consideration.  It 
oscillates near the fixed value. 

 

 
 

FIG. 1. 
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