
F.Yu. Kanev et al. Vol. 11,  No. 9 /September  1998/ Atmos. Oceanic Opt.  
 

0235-6880/98/09  883-05  $02.00  © 1998 Institute of Atmospheric Optics 
 

883

INFLUENCE OF LOCAL EXTREMA ON THE EFFICIENCY OF GRADIENT 

ALGORITHMS FOR LASER BEAM CONTROL 
 

F.Yu. Kanev, V.P. Lukin, and L.N. Lavrinova 
 

Institute of Atmospheric Optics,  
Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received October 15, 1997  
 

The control over high-power laser beam based on the aperture sounding 
algorithm and its modification is considered in this paper using methods of 
numerical experiment.  A domain of the problem  parameters is shown to exist for 
which local extrema appear in the space of control coordinates.  A decrease in the 
efficiency of correction for the beam thermal blooming due to these local extrema is 
estimated.  The method for seeking the global (basic) maximum is proposed. 

 

1. INTRODUCTION 
 
A comparison of algorithms for phase control over 

laser beams in a nonlinear medium carried out by many 
authors1$3 shows that none of the algorithms known at 
present is free of serious drawbacks.  Thus, for 
example, it is characteristic of the phase conjugation 
method that the correction becomes unstable as the 
radiation power increases.3,4  The aperture sounding5 
has a higher stability and, perhaps, a faster 
performance.  At the same time a decrease of the 
efficiency of this algorithm (and others based on the 
gradient method of seeking the efficiency function 
extremum) is observed if local extrema are present in 
the space of the beam control coordinates.1  Up to now 
this problem has been investigated less thoroughly than 
it is needed.  In particular, the domain of the problem 
parameters where local maxima appear is not 
determined, even approximate estimations of a decrease 
in the efficiency done. No possibilities to overcome the 
troubles due to such local extrema have been  
considered so far.  These problems are discussed in the 
present paper. 

The study is carried out based on the methods of 
numerical experiment.  Analysis of the high-power  
beams became feasible owing to the increase in the 
power of modern computers and corresponding increase 
of the dimensionality of the  calculation grids used.   

 
2. NUMERICAL MODEL AND THE SOFTWARE 

VERSION OF THE MODEL 
 
Beam propagation was considered in the 

approximation of stationary wind refraction for the case 
of a homogeneous medium.  Under such conditions the 
complex amplitude of a field, E, can be described by 
the following system of equations2: 
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where k is the wave number, n0 is the undisturbed 
magnitude of the refractive index n, z is the coordinate 
axis along which the beam propagates, T is the 
temperature of a medium, V is the wind velocity 
vector, α is the absorption coefficient; notations of 
other physical values are of common use. 

The interaction between the beam and the medium 
is characterized by the dimensionless parameter 
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that is proportional to the intensity I and to the initial 
radius of the beam a0, and depends on other parameters 
of the medium and radiation. 

Nonlinear distortions in the observation plane 
z = z0 can be described using the following criterion: 

J(t) = 

1
P ⌡⌠    ⌡⌠ exp ($ (x2

 + y2)/r2a) I(x, y, z0, t) dx dy; (3) 

the function J(t) is, in fact, the radiation power within 
a given aperture.  In formula (3) ra is the radius of the 
receiving aperture and P is the total power of the 
beam.   

We have considered the correction for nonlinear 
distortions based on two algorithms. The aperture 
sounding algorithm1 according to which the change of 
adaptive corrector control coordinates F = {F1, F2, ... , 
FN} is performed according to the following formula: 

F(t) = F(t $ τd) + β(t $ τd) grad J(t $ τd), (4) 

and a modified aperture sounding algorithm6 

F(t) = F(t $ τd) + β(t $ τd) sign ⎝
⎛

⎠
⎞ΔJ(t $ τd)

ΔFi(t $ τd)
 , (5) 

where Fi is the ith component of the vector of control 
coordinates (coefficients of Zernike polynomials or 
adaptive mirror drive displacements can be used as the 
components), β(t $ τd) is the coefficient whose value 
decreases at the iterations that had led to a decrease in 
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the control efficiency function (in our problems it is the 
criterion J(t), formula (3)), sign is the function of taking 
a sign.  The algorithms (4) and (5) are differ by that, 
according to expression (4), in the process of test 
variations the value and direction of the iteration step are 
determined, while according to the algorithm (5) only the 
motion direction (direction to an extremum) is sought, 
and the step value is completely specified by the 
coefficient β(t $ τd).   

The program that realizes the calculation scheme is 
developed using the methods of object-oriented 
programming (programming language C++).  The main 

panel of the program interface is shown in Fig. 1 where 
the adaptive system is represented schematically, the 
basic input physical parameters of the problem are also 
presented in the block-diagram. Those are the path 
length, nonlinear layer length (its extension, in the 
general case, may be different from the path length), 
and the non-linearity parameter.  Characteristics of the 
calculated model are also pointed out in the form of the 
dimensionality of the calculation grid and the number 
of phase screens along the beam propagation path.  
Thus, all data characterizing the variant of the 
calculation chosen are displayed on the main panel.  

 

 
 

FIG. 1. Interface of the program developed for the numerical model used. 
 
During the calculations the basic parameters of a 

beam in the observation plane are being displayed on 
the panel either. Those are the field distribution, 
criterion J (formula (3)), maximum intensity, energy 
radii of the beam along the axes that are perpendicular 
to the propagation direction.   

The input parameters and the control algorithm 
are specified by the interface panels that are accessible 
through the program menu.  Calculation results are 
stored in a file. 

 
3. ACCURACY OF DETECTING THE PRINCIPAL 
MAXIMUM AGAINST THE BACKGROUND OF 

LOCAL EXTREMA 
 
The aperture sounding algorithm (and its 

modification) can be considered as a gradient method of 
seeking of the efficiency function extremum.  The 
extremum is being sought in the space of control 
coordinates Fi.  Therefore, to reveal the algorithm 
peculiarities, in order to simplify the problem, it is 

possible to consider the procedure of seeking the global 
extremum against a relatively simple analytical 
function that has local maxima.  The basic relationships 
obtained from simplified analysis can also be correct for 
more complicated problems of the adaptive optics.   

We have considered a function of one variable 
which has a global maximum and two local ones 
disposed symmetrically relative to its global 
maximum.  Regardless of local extrema present the 
algorithm could, in certain cases, identify the main 
peak.  The relative width and height of the local 
extrema (normalized to the corresponding parameters 
of the global extremum) have been varied.  That 
allowed us to determine the boundary of the domain 
where the algorithm always isolates the global 
maximum.  For the algorithm (4) the results are 
presented in Fig. 2a.  The region of the parameters, 
for which a global maximum is determined, is above 
the curve.  That means that the algorithm easily 
œsteps overB the narrow and high local extrema, but 
œstopsB on the relatively wide ones regardless that 
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their heights can be low (in comparison with the 
height of a principal maximum).  This is connected 
with that the iteration step is determined by the 
derivatives (ΔJ/ΔFi), that is, by the rate with which 
the function changes.  So, if the derivative is 
sufficiently large (local extremum is œnarrowB and 
œhighB), then the algorithm œsteps widelyB and œsteps 
overB a hill.   

As to the algorithm (5) the corresponding data are 
presented in Fig. 2b.  In the algorithm considered the 
step value is determined as β ⋅ sign(ΔJ/ΔFi), i.e., it 
does not depend on the value of the derivative, 
therefore the ability of the algorithm to œstep overB an 
extremum or not is determined by the width of the 
maximum only while being independent of its height.   

On the whole a conclusion can be drawn, in a one-
dimensional case, that a choice of the algorithm is 
determined by the characteristics of the function under 
study (by the shape of local extrema). 

For the sake of clarity in describing the œhillB 
and peculiarities of seeking the maximum, let us 
consider the  control, in the problem of compensation 
for nonlinear distortions, to be performed in the space 
of two coordinates (slope and focusing). In this case 
the œhillB of the efficiency function is a distribution 
of the criterion J (formula (3)), each value of which 
corresponds to fixed values of the slope and focusing.  
As an example, that type of a œhillB is shown by the 
lines of equal level in Fig. 3.  The results have been 
obtained for the case of stationary wind refraction, 
when no transient processes due to the interaction of 
the radiation with the medium are not taken into 
account. Distribution of the criterion J in the œslope$
focusingB space has one extremum, the search 
trajectory of an adaptive system for which is shown 
by the dashed line (the aperture sounding algorithm). 

 
FIG. 2. The boundaries of the region where the 
determination of the global maximum in the presence 
of local ones is possible (as found for the function 
specified analytically):  the algorithm (4), above the 
curve the control stops at the global extremum, below 
the curve the control stops at a local extremum (a);  
the algorithm (5), to the left of the straight line is the 
global extremum, to the right of the straight line is a 
local extremum (b). 

 
FIG. 3. The control efficiency function (the criterion J, expression (3)) in the space of œslope$focusingB 
coordinates which is represented by the lines of equal level (numbers are the values of J on a line).  In the same 
figure a trajectory of motion to an extremum for the algorithm (4) is shown (dashed line).  Parameters: Z = 0.5 Zd, 
Znl = 0.1 Zd, Rv = $ 70, ra = a0/4. 
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FIG. 4. The efficiency function distribution in the space of œslope$focusingB coordinates when the extension of 
nonlinear layer is increased relative to that in Fig. 3. Parameters: Z = 0.5 Zd, Znl = 0.25 Zd, Rv = $ 70, ra = a0/4. 

 

 
FIG. 5. The control efficiency function (the criterion J, expression (3)) in the space of œslope$focusingB 
coordinates (a). In the same figure a trajectory of motion to an extremum for the algorithm (4) (dashed line) and 
(5) (dotted line) is shown; the beam cross section at the global extremum (b);  the beam cross section at a local 
extremum (c); the beam cross section at the control beginning (d). Parameters: Z = 0.5 Zd, Znl = 0.1 Zd, Rv = $ 100, 
ra = a0/4. 
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FIG. 6. The control efficiency function (the criterion J, expression (3)) in the space of œslope$focusingB 
coordinates.  Parameters correspond to those used in Fig. 5, except for the aperture radius that is increased. 
 

When the extension of a nonlinear layer 
(Znl = 0.25 Zd) increases without changing the rest 
parameters of the problem a secondary maximum 
appears in the space of control coordinates. The 
height of this maximum is approximately one sixth of 
the principal maximum height (Fig. 4). That means 
that if the system stops at a local extremum, then the 
control efficiency will strongly decrease. This does 
not happen in the example considered, and the 
algorithm moves in the direction of a larger slope to a 
global extremum. 

When the nonlinearity of a medium (modulus of 
the parameter Rv) increases and the rest 
characteristics are kept unchanged there are two 
extrema in the criterion distribution (5), with the 
height difference between these extrema being about 
30%.  The intensity distributions over the beam cross 
sections which correspond to the points of maxima 
and the intensity distribution in the control 
beginning (i.e., for zero values of the slope and 
focusing) are presented in the same figure.  The local 
maximum corresponds to the situation when the 
intensity distribution has two extrema of practically 
equal heights.   

At the global extremum the distribution of light 
field is Gaussian and the value of maximum intensity 
is close to the diffraction-limited one. 

Use of the algorithms (4) and (5) with the 
above chosen parameters yields identical results: the 
compensation for distortions stops at a local 
extremum (motion trajectories are shown in Fig. 5a).  
Further increase of focusing does not lead to the 
growth of the criterion J (overfocusing), increase of 
the slope (and thus approaching to the global 
extremum) is also impossible because of the 
peculiarities of the algorithms (4) and (5).  
 

An increase of the gradient step β does not allow one 
to approach to global maximum either.  

A sufficiently simple method of œsmoothing the 
hillB when local maxima disappear is to increase the 
receiving aperture radius ra. The œhillB calculated for 
the same parameters used in the example considered 
above, but for ra = a0 is presented in Fig. 6. One can 
see from this figure that only one maximum with 

coordinates corresponding approximately to the 

coordinates of local extremum in Fig. 5a is observed 
in this case.  

Thus, we can draw a conclusion that one of the  
possible methods to solve the problem of local 
maxima influence is to increase the receiver aperture. 
In this case the coordinates of an extremum are found 
a little bit less accurately than in the case of small 
receiving areas.  But, after an approximate 
determination of the coordinates of a maximum a 
decrease of the aperture and more accurate localizing 
of the extremum are possible.   
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