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We propose here a mathematical model of planning the measurements of 

submicron aerosol size spectrum developed to fit a mesh-type diffusion battery 

technique in application to the case of an aerosol with a single-mode size-

distribution function. The technique proposed enables one to numerically determine 

an optimal number of meshes.  When making computer simulations of locally 

optimal plans of measurements we have used some realistic parameters of the 

atmospheric aerosol size spectra.  Based on modeling results we have constructed 

some analytical approximations of the observation plans. 
 

INTRODUCTION 

 

No measurement techniques have so far been 
developed to cover the entire size spectrum of natural 

atmospheric aerosols from 10$3 and up to 102 μm.1,2 
Therefore, a combination of different methods is usually 
used with each of these methods being optimal for 
measurements in a narrower size region. 

In recent years a technique of  mesh-type diffusion 
batteries for measuring size of particles in sub-micron 
region (d < 1 μm) is normally used. This technique has 
first been proposed in the middle 70s (see Refs. 3 to 5). 
The simplicity of the measuring device design is among 
its main advantages. 

Wide use of this technique in different researches 
has certainly stimulated a series of theoretical and 
experimental studies in this area.  Those studies were 
mainly aimed at assessing the limiting capabilities of the 
approach and estimating the accuracy of the aerosol size-
distribution functions that may be obtained in a 
particular study (see Refs. 3 to 13). In a number of 
papers the possibilities of the technique to distinguish 
among multimode distributions have been estimated and 
limitations of the size-resolution of the measurement 
technique14,15 shown. 

In Ref.15 it is discussed, based on the results of 
numerical experiments, that the method only enables a 
reliable reconstruction of bimodal distributions and it is 
also shown that there is no any sense in measuring more 
than six coefficients of the particle breakthrough. 
However, neither that paper, nor any of the preceding 
ones did solve the problem on how the concrete 
parameters of a diffusion battery may influence the 
measurement accuracy. The problem of choosing the 
measurement regime regarding the sub-micron aerosol 
particles obeying a single-mode log-normal size 

distribution law was considered in detail in Ref. 16 for 
the channel-type diffusion batteries. 

The choice of one or the other way of arranging the 
measurements can essentially influence the accuracy with 
which the distribution parameters may be reconstructed. 
However, the attempts to analyze relevant measurement 
schemes are very difficult to be performed. This is first of 
all connected with a multistage research needed and with 
the difficulty of choosing concrete accuracy criteria when 
solving the inverse problems of reconstruction and 
planning the observations. In this paper the problem of 
planning the experiment based on using a mesh-type 
diffusion battery (MDB) is considered, and the locally 
optimal plans of measurements are numerically calculated 
for the case of a single-mode log-normal size distribution 
of aerosols. 

 

STATEMENT OF THE INVERSE PROBLEM 

 

The passage of monodisperse aerosol through y 
meshes of a MDB may satisfactorily be described by the 
following semiempirical expression14: 

p(y) = exp($ “ 3 D2/3(r)), (1) 

where c is the constant whose value depends on the 
flow velocity and parameters of the meshes (the cell 
size and diameter of the threads), r is the radius of 
particles, in nm, and D(r) is the diffusion factor, which 
is usually14 described by the approximate relation 
which is as follows: 

D(r) = 
B1

r
 + 

B2

r2
 , (2) 

where B1 = 8.53⋅10$9 and B2 = 1.27⋅10$6. 
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The polydisperse aerosols are normally described 
by a particle size-distribution function f(x, Θ). In this 
case the passage of polydisperse aerosol through y 
meshes is described as follows:  

p(y, Θ) = ⌡⌠
$∞

∞

 e$y t(x) f(x, Θ) dx, (3) 

where x = log r;   t(x) = “ D2/3(r),   r = 10x, and Θ is 
the vector of the unknown parameters. 

In this paper we consider single-mode size-
distributions of particles. The function of particle 
distribution over size is described, in the majority of 
aerosol ensembles of condensation and coagulation 
origin, by the log-normal law,17 that is, by the 
expression of the following type: 

f(x, Θ) = (2π log2 σg)
$1/2 × 

× exp{$(x $ log r50)
2/2 log2 σg}, (4) 

where r50 is the mean geometrical radius of particles, σg 
is standard geometrical deviation, and Θ = (r50, σg). 

Let the measured values of the aerosol 
breakthrough be described as follows: 

λk = p(yk, Θ) + ξk, 

E[ξk] = 0,  E[ξk ξj] = δkj σk
2,  k, j = 1, N . (5) 

Here e denotes the operation of mathematical 
expectation and δkj  is the Kronecker symbol. 

The vector Θ can be estimated using the least-
squares method18 

∑
k=1

n
 σ k

$2 [λk $ p(yk, Θ)] 2 → min
Θ

. (6) 

Here n is the number of observations, λk are the measured 
values of the aerosol breakthrough through the MDB 
meshes, and σk is the variance of the measurement errors. 
To improve the accuracy of estimating the vector of 
parameters, it is worth to  optimize, first, the conditions 
of observations that means that one must properly set a 
set of the MDB meshes. 

To calculate numerically the sought vector Θ, one 
may apply the procedure of gradient descent18 

Θm+1 = Θm + M$1 (Θm) Y(Θm). 

Here 

M(Θ) = ∑
k=1

n
 σ k

$2 f(yk, Θ) fT(yk, Θ)], (7) 

Y(Θm) = ∑
k=1

n
 σ k

$2 f(yk, Θ) λk, 

f(y, Θ) = ∇Θ p. 

PLANNING MEASUREMENTS 

 

Let us consider the problem of seeking optimal sets 
of meshes to provide for identifying the aerosol particle 
sizes. 

Let the plan of observations be understood as the 
following set of values: 

εn = 
⎩
⎨
⎧

⎭
⎬
⎫y1, y2,  . . . , yn

q1, q2,  . . . , qn
 , 

where qi = Si/N, Si is the number of observations 

made with the set of meshes yi, i = 1, n , and N = ∑
i=1

n

 Si 

is the total number of observations. 
In this paper we restrict ourselves, for certainty, to 

the D-optimal plans, that maximize the information matrix 

l(ε, Θ) determinant, defined by the expression (7). 
Strictly speaking, no optimal plan can be 

constructed a priori because of the nonlinear 
dependence of p(y, Θ) on Θ. Therefore, we have 
restricted ourselves to the determination of only locally 
optimal plans. The determination is being done using 
the following procedure of the sequential analysis and 
planning of the observations.18 

1. Let the experiment be represented by K $ 1 
observations performed following a nondegenerate plan 
εK$1 (i.e., | l(εK$1, Θ) | ≠ 0). Let us find the point 3K 
such, that 

d(yK, εK$1, ΘK$1) = max
y ∈ Ω

 d(y, εK$1, ΘK$1), 

where 

d(y, εK$1, ΘK$1) = 

= fT(y, Θ) M$1 (εK$1, Θ) f(y, Θ) | Θ=ΘK$1
. 

2. Let an additional observation λK = !(yK) + ξK 
be done at the point yK. 

3. Then we seek the estimates, according to the 
least squares method, of ΘK from K the observations 
following the plan: 

εK (yK) = 
K $ 1

K
 εK$1 + 

1
K

 ε(yK), 

where ε(yK) is the single-point plan. 
After the operations performed following the point 

3, we return again to the operations under point 1, and 
so on, while  

| l$1(εN, ΘN) | /N 

will not become less than some defined value. 
Note 1. If there are approximate estimates of r50 

and σg available, the procedures 1$3 can be replaced by 
the following two ones19 

$ to construct an optimal plan ε and to carry out 
the observations according to it ; 

$ to estimate r50 and σg, using the measurement 
performed according to the plan ε. 
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Note 2. In the case of a monodisperse aerosol and 
the regression (1) the locally optimal single-point plan 
can be represented in an explicit form as the function 
of particle radius. 

The matter is that in this case the optimal number 
of meshes is determined by the condition when the 
below expression reaches its maximum 

M(ε, r) ≡ ⎝
⎛

⎠
⎞ ∂p
 

∂r  
2

→ max
ε

. (8) 

In view of the necessary condition of the function 
extremum (8) over 3, it is simple to obtain an unknown 
quantity of the point of the optimal plan 

y = 1/[cD2/3(r)]. (9) 

 
NUMERICAL EXPERIMENTS 

 
Strictly speaking, no optimal plan can be 

constructed a priori because of the nonlinear 
dependence of the regression function (3) on the 
unknown parameters r50  and σy. Therefore in this 
section, using the procedure 1$3, we restrict ourselves 
to the numerical simulation of locally optimal plans of 
observations for the set values of the vector Θ. 

The expression (3) and it derivatives with respect 
to the relevant parameters can essentially be simplified 
if making use of the following substitution: 

ω1 = 
1

log σg
 ,     ω2 = 

log r50

log σg
 . (10) 

Then, taking into account Eqs. (3), (4), and 
(10), we obtain 

p(y, ω) = (2π)$1/2 ⌡⌠
$∞

∞

 ω1 e
A(x,y,ω) dx, 

 ∂p(y)
 

∂ω1
 = (2π)$1/2 × 

× ⌡⌠
$∞

∞

 (1 $ ω1
2 x2 + xω1 ω2) e

 A(x,y,ω) dx, 

 ∂p(y)
 

∂ω2
 = (2π)$1/2 × ⌡⌠

$∞

∞

 ω1(x ω1 $ ω2) e
 A(x,y,ω) dx, 

 
where 

A(x, y, ω) = $yt(x) $ 
1
2
 (x ω1 $ ω2)

2. 

Let us take as the characteristic range r50 
variation the interval of the aerosol particle sizes 
from 5 to 200 nm, while the standard geometrical 
deviation σg being from the interval (1.2; 2.5). 

 

 
 

FIG. 1. The lower and the upper number of meshes 
in the locally optimal plans: σg = 1.2 (solid line),  
σg = 1.5 (dashed line), and σg = 1.8 (long–dashed 
line), dot–and–dash line is the position of the 
optimal planning point as a function of the particle 
radius in the monodisperse case. 

 
Figure 1 shows the results of simulation of the 

local D-optimal plans for the fixed values σg = 1.2, 1.5, 
and 1.8 and the current values of r50 from the area of 
admissible  values taken with the step of 5 nm. The  
plans constructed consist of two sets of the meshes, 
31(ω) and 32(ω), that include different number of 
meshes. As is seen from the figure, the number of 
meshes in the plans obtained is mainly determined by 
the geometric mean radius of particles being 
monotonically increasing functions of r50. 

At r50 ≈ 85 nm the functions 32(ω) break and 
degenerate into a straight line, which is parallel to r50. 
In this case it is connected with the limitation on the  
number of meshes admissible for use. 

The relations of the optimal plan points to r50  and 
σg shown in the figure enable us to propose quite  good 
analytical approximations. The position of the 
measurement points from the plans is quite 
satisfactorily described by the following dependences: 

y1(Θ) = cot(c1 σg) r50 + a1, 

y2(Θ) = 
⎩
⎨
⎧ cot(c2 σg) r50 + a2, at r50 < 85 nm,

 200 grids, at r50 ≥ 85 nm,
 

where c1 = 0.3, c2 = 0.7, =1 = $10, and =2 = $2. 

 

CONCLUSION 

 
In this paper we have analyzed the problem on 

optimizing the measurement conditions when studying 
the atmospheric aerosol that is described by a single-
mode size-distribution function. The mathematical 
methods of planning the experiment proposed in this 
paper, may well be applied to the cases when 
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multimode distribution functions, if taking into account 
some additional relationships. 

The efficiency of planning the observations 
strongly depends on the vast complex of the conditions 
to be fulfilled. First of all the mathematical model used 
must be adequate to the level of its certainty required. 
The possibilities that the system of observations may 
provide are also very important. On the other hand, the 
optimal plans of measurements constructed allow us to 
formulate in a certain sense the limiting conditions of 
the inverse problem stability. 
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