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Some problems connected with the development of modern ground-based 

adaptive telescope are investigated, in particular, to its equipment with additional 

optical system of formation of a laser reference star.  This paper is devoted to 

problems of determining of the type of a formed laser reference star.  The matter is 

that the scientific literature monostatic and bistatic schemes of formation of a laser 

reference star are known.  It is assumed in the monostatic scheme that the laser 

beam is focused in the atmosphere so, as the fluctuations of the laser reference star 

caused by the radiation that has passed the forward and back paths have maximum 

correlation.  An opposite situation is observed for the bistatic scheme the 

fluctuations caused by the radiation that has passed the forward and back paths 

are assumed completely uncorrelated.  In this paper, the results of calculations are 

presented for general scheme of formation of the laser reference star, when the 

arbitrary correlation between the random image angular shifts caused by the 

fluctuations on the forward and back paths can be obtained.  The expressions for 

the monostatic and bistatic schemes are obtained as the limiting cases. 
 

Equipment of a modern ground-based adaptive 
telescope with an additional optic system of laser 
reference star formation is one of the most promising 
tendencies for its development (Refs. 1$3).  In my 
opinion, fairly extensive bibliography of modern works 
(unfortunately, the works carried out earlier in the 
USSR and Russia in the last few years were not 
included) on basic stages of the development of the 
laser star formation systems is presented by Rigazzoni.3 

This paper is a logical continuation of works 
carried out in 1966$1986 in the USSR (Refs. 4$17) as 
well as recently in Russia (Refs. 18$22).  Theoretical 
and applied investigations on the use of lasers for the 
laser reference star formation, which become very 
popular in the last few years, made me to return to 
some results obtained by me more than 18 years ago.  
These results were most completely presented in 
Refs. 7, 12 and 16.  They become available for wide 
scientific community, especially western, after 
publication of Ref. 17.  The forth and five chapter of 
this monograph were devoted to this problem.  It 
should be mentioned that many problems being solved 
now have already been solved at that time. 

 
PECULIARITIES OF REFLECTED OPTICAL 

WAVE FLUCTUATIONS 

 
Importance of investigations of the efficiency of 

adaptive optics systems with the use of artificial 
reference sources have been understood in the early 70s 
(Refs. 14$17).  Basic principles of operation of the 

systems using reference sources to obtain the 
information on the fluctuations in the channel of 
propagation of optical radiation have already been 
formulated at that period.  Since the reciprocity 
principle14,15,17 provides the basis for the adaptive 
optics systems the system using the independent 
reference source whose radiation propagates in the 
direction opposite to that of the radiation propagation 
is the most efficient adaptive optics system. 

From the viewpoint of practical realization the 
systems using the back scattered radiation (from the 
atmospheric inhomogeneities or an object) are most 
simple for realization. In this case, an artificial 
(virtual) reference source is formed12. 

In the early 80s among the astronomers and 
designers of adaptive telescopes a new concept of a 
laser reference star (LRS) appeared (Refs. 2 and 3).  
There are two basic schemes of LRS formation: 
monostatic and bistatic.  A ground-based laser is used 
for these aims and therefore the received optical 
radiation passes twice through one and the same 
atmospheric inhomogeneities.  The first time along the 
path upward in order to form the LRS itself and for the 
second time along the path downward as a result of 
scattering (secondary emission and elastic aerosol or 
molecular scattering) from the atmospheric 
inhomogeneity. In both schemes it is necessary to 
consider the peculiarities of the fluctuations of light 
waves that has passed twice through the atmosphere. 

About the early 70s the researchers dealing with 
the optics vision and laser beam formation systems in 
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the atmosphere realized the importance of taking into 
account the peculiarities of the fluctuations of the 
reflected waves (Refs. 4 and 5). Double passage over 
along the atmospheric paths is always present in 
sounding systems in contrast with transmission systems.  
The researchers of the above-mentioned systems 
introduced such terms as the effective scattering 
volume, monostatic optical scheme, bistatic laser 
sounding scheme, and some others.  In my opinion, 
such terms as the effective scattering volume and the 
laser reference star are scientific synonyms.  In the 
coarse of this investigations in 1975$1983, the 
fluctuations of the displacement of the center of gravity 
of the image formed in a system of laser detection and 
ranging using a focused laser beam were considered. 
The fluctuations of the displacement of the atmospheric 
sounding volume image were investigated in Ref. 4.  
The monostatic and bistatic schemes were considered. 

Relations for the dispersion of the fluctuations of 
the displacement of the optical image center of gravity 
in the photodetector plane in case of detection and 
ranging of the surface with arbitrary scattering 
properties were obtained (Ref. 4, pp. 84$85).  For 
strongly scattering surface $ in the approximation of 
the Lambert scattering $ for the bistatic scheme it was 
obtained that the variance of the linear displacement of 
the image center of gravity ρim in case of reflection is 
given  by the formula (Ref. 4, p. 92) 

<ρ2
im> = 

F 

2

x 

2 <ρ
2
l.b> + F 

2 <(ρss
F)2>, (1) 

where <ρ2
l.b> is the variance of the random displacement 

of the laser beam center of gravity in the plane of 
detection and ranging for upward a beam propagation; 

<(ρss
F)2> is the variance of the random angular 

displacement of a fixed secondary source (for 
downward propagation); F is the focal distance of a 
telescope; X is the distance between the laser source 
and the scattering volume. 

Thus, it was shown that for the bistatic scheme 
(the limiting case was considered for the bistatic 
scheme, when the fluctuations for the forward and back 
paths are uncorrelated) the variance of the angular shift 
of the image is a sum of the variances of the sounding 
beam angular shifts and of the fixed secondary source 
image angular shifts.  For strongly scattering medium 
and the focused beam, the secondary source is in fact a 
point source. 

The extended source image jitter was also 
investigated at this period. References 6 and 10 should 
be especially mentioned here. Expression for the 
variance of the image jitter of the extended source in 
form of glowing fine filament was obtained in Ref. 6.  
Reference 10 was devoted to investigations of the 
correlation between jitters of centers of gravity of two 
arbitrary oriented laser beams. 

Nevertheless, Orlov et al.4 failed to account and to 
calculate cross correlation between the fluctuations of 
the focused beam and secondary source image shifts. 

CROSS CORRELATION BETWEEN RANDOM 

SHIFTS OF BEAMS AND IMAGES 
 

In 1978$1980 (Refs. 7 and 12) I studied the 
problem of stabilization of the laser beam propagation 
direction in the turbulent atmosphere.  For its solution 
the measurements of the reference source image shift 
were considered (including a natural star) in the focal 
plane of a telescope.  In particular, in Ref. 7 the cross 
correlation function <ρl.b ρF> between the vector 
characterizing the random shift of the energetic center 
of gravity of an optical beam ρl.b propagating through 
the turbulent medium and vector specifying the center 
of gravity of the image of a star or any reference source 
formed by the same optical system ρ

F
.  Therewith it 

was assumed that it could be the image of a reference 
source $ beacon or of the optical beam reflected from 
an object.  As a particular case, they could be the 
images of a natural star, a specularly reflected laser 
beam or a point reference source. 

The cross-correlation function between the random 
displacement of the Gaussian beam center of gravity 
and the image center of gravity of a plane wave was 
calculated in Ref. 7.  The beam and the plane wave 
propagated along the same optical path.  The random 
shift of the beam center of gravity are determined by 
the vector (Ref. 8) 

ρl.b = 

1
P0

 ⌡⌠
0

X

 dξ (X $ ξ)⌡⌠    ⌡⌠ d2R I(ξ,R) × ∇R n1(ξ, R), (2) 

P0 =⌡⌠    ⌡⌠ d2R I(0, R), 

where n1(ξ, R) denote the fluctuations of the refractive 
index at the point (ξ, R); I(ξ, R) is the field intensity 
at the point (ξ, R) from a laser source located at the 
origin of coordinates in the initial plane (for ξ = 0); X 
is the thickness of the atmosphere layer.  The random 
image shifts in the focal plane of optical system (a 
telescope or equivalent thin lens with a focal distance F 

and an area Σ = πR2
0) are given by the formula (Ref. 9) 

ρF = $ 
F

k Σ ⌡⌠  

Σ   
   ⌡⌠ ∇ρ S(x, ρ) d2ρ, (3) 

where k is the radiation wave number, S(x, ρ) are the 
optical wave phase fluctuations on the aperture of the 
optical system (in the plane ξ = X) at the point ρ. The 
cross-correlation between the random vectors ρl.b and ρF 
is given: 

K = <ρl.b ρF>/[<ρ2
l.b> <ρ2

F>]1/2. (4) 

Here and further in this paper <...> denotes averaging 
over an ensemble of realization of the random function 
n1(ξ, R).  Let us assume that the functions <I(ξ, R)> 
and Φ

n
(ξ, κ) are isotropic, and the average intensity 

<I(ξ, R)> for a Gaussian beam is given by the equation 
(Ref. 8) 
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<I(ξ, R)> = 
a2

a2
ef(ξ)

 exp ($ R2/a2
ef(ξ)), (5) 

where 

a2
ef(ξ) = a2 ⎣
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6/5

  

Ω = 
ka2

Xξ  , a and f are the initial parameters of the 

Gaussian beam, DS(2a) in the structure phase function.  
As a result, we obtain (Ref. 7) 
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. (6) 

In calculations, we use the following spectrum: 

Φ(ξ, κ) = 0.033 C2
n(ξ) (κ2 + κ2

0)
$11/6, (7) 

which takes into account the deviation from the power-
low dependence in the range of the external turbulence 

scale L0 = 2πκ$1
0 , C2

n
(ξ) is the structural parameter of 

the turbulent atmosphere. 
The estimates were made out for a homogeneous 

path (the initial beam diameter was equal to the 
diameter of a receiving aperture telescope) for the 
following parameters of the problem: 

κ$1
0  >> (R0, aef, x/k); kR2

0 >> x, 

Ω$2 ⎝
⎛

⎠
⎞ 

1
2
 DS(2a)

6/5
 << 1. 

We obtained (for the focused beam f = X) the value 
K = 0.84. 

Thus, in Ref. 7 a high positive correlation was 
found between the shifts of the Gaussian beam and of 
the plane wave center of gravity under condition that 
the laser beam and plane wave propagate over the same 
path and in the same direction. 

Later in 1980 these results were generalized in 
Ref. 12 for the case in which the beam and image 
formation occur in the opposite directions.  Therewith 
it was assumed that the reference image formation in 
the telescope focal plane occurs for the following 
scenarios: plane wave, spherical wave and arbitrary 

Gaussian beam reflected from a plane mirror.  For the 
plane wave and homogeneous path we obtained: K = 
= $ 0.87 for a collimated beam, K = $0.82 for the 
focused beam.  For a reference spherical (and any 
other) wave <ρl.b ρF> can be calculated directly from 
the formulas of Ref. 12. 

Calculations of the efficiency of the correction of 
the extended object image observed through the 
turbulent atmosphere on the basis of an adaptive 
telescope with a reference star were first done in 
Ref. 16. 

As a result, we established that in the Russian 
papers published in 1966$1982 all functions necessary 
for an analysis of the image random shifts of the 
sounded volume for laser sounding of the atmosphere 
were calculated not only for bistatic, but also for 
monostatic scheme.  However, every time when we 
solve a particular problem, the question on a scattering 
(or reflecting) medium model remains open, when in its 
turn determines a secondary source model 
(see Eq. (1)).  In this case, we may introduce a model 
of a scatterer or solve the scattering optical problem. 

 

PROBLEMS OF THE USE OF THE LASER 

REFERENCE STAR 

 

A rebirth of interest to this problem was caused by 
the suggestion to use a signal of the laser reference star 
for image correction in a ground-based telescope.  In 
particular, Fugate2 pointed out several serious problems 
connected with the use of the laser reference star in 
telescopes, namely the effect of focus isoplanatism and 
the practical impossibility (for the monostatic scheme) to 
separate out contributions of the upward and downward 
propagation to the laser reference star image jitter. 

It should be mentioned that some papers 
(Refs. 23$25) appeared in which several ways of the 
solution of one of these problems were suggested.  So, 
in Refs. 24 and 25 the scheme of formation of the laser 
reference star was suggested, in which the laser beam 
passing through the principal telescope was used 
together with two auxiliary telescopes used for 
measurements of the laser reference star image jitter.  
The optical scenario is such that for the principal 
telescope the laser reference star represents a point 
source, whereas for the auxiliary telescopes it is 
extended.  Therefore, as pointed out by Belen’kii,24 the 
monostatic laser reference star cannot be used for the 
correction of wavefront tilts in the principal telescope, 
however, the bistatic scheme (with the auxiliary 
telescopes) allows one to separate out the component of 
the laser reference star image jitter, corresponding to a 
directed laser beam, which is highly correlated with the 
total wavefront tilt for the nature star.  Unfortunately, 
Belen’kii does not list all the references he used, and 
Eqs. (15) and (16) presented in Ref. 24 were incorrect.  
In his next paper (Ref. 25) Belen’kii used a narrow 
laser beam directed by the optical system located in 
front of the principal telescope and suggested to use the 
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difference between the laser reference star image jitter 
measured simultaneously by the principle and auxiliary 
telescopes as a signal for the tilt correction. References 
4, 6, 7, 10, and 12 on the papers published long before 
of Ref. 25 were also lacking. 

In turn, I must also claim that while analyzing the 
Ragazzoni scheme in Refs. 20 and 21, I did not list all 
the references and omitted Refs. 23$25. 

 

CORRELATION BETWEEN LASER BEAM SHIFTS 

AND NATURAL STAR IMAGE FOR THE BISTATIC 

SCHEME OF LASER REFERENCE STAR 

FORMATION 

 

After Ragazzoni (Refs. 3 and 23), let us consider 
the following scheme of the laser reference star 
formation (Fig. 1).  A laser reference star is formed 
with a laser system with a separate transmission 
aperture.  Here, the following designations are 
introduced: R0 is the radius of the principal telescope 
aperture, X is the altitude of the laser reference star 
formation (the receiving aperture of the telescope is 
placed in the plane x = 0); a0 is the radius of the 
aperture of the auxiliary telescope that forms the laser 
reference star; ρ0 is the vector of the auxiliary telescope 
center shift relative to the principal telescope optical 
axis. 

 

FIG. 1. Schemes of formation of laser reference star: 
monostatic, intermediate, and bistatic. 
 

We assume that the principle telescope operates 
with the adaptive correction using the radiation of the 
laser reference star formed by laser system on the 
optical axis of the principal telescope at the distance 
(altitude) X from the receiving aperture.  As shown in 
Fig. 1, the principal telescope is pointed exactly to the 
zenith. The weak natural star and the laser reference 
star are simultaneously observed on its optical axis. The 
laser beam zenith angle (under condition that 
⏐ρ0⏐ << X) is equal to ⏐ρ0⏐/X. 

Suppose that the natural star is located in the 
infinity and forms the plane wavefront.  The vector 
that characterizes the random tilt of this wavefront 
caused by the atmospheric turbulence is written as 
follows (Ref. 9): 

ϕ
pl
F  = $ 

1
Σ ⌡⌠  

Σ   
   ⌡⌠ d2

ρ ∇ρ S
pl(0, ρ), (8) 

where  Spl(0, ρ) = k ⌡⌠
0

∞

 dξ⌡⌠    ⌡⌠ d2n(κ, x $ ξ) exp (iκρ)   

are the phase fluctuations of the plane wavefront on the 
receiving aperture, Σ is the area of the telescope 
receiving aperture, and k is the radiation wave number.  
The fact that the optical wave from the natural star is 
propagated downward through the atmosphere was 
accounted in the derivation of Eq. (8) and the 
following spectral expansion of the fluctuations of the 
atmospheric refractive index was used: 

n1(ξ, ρ) = ⌡⌠    ⌡⌠ d2n(κ, ξ) exp (iκρ). 

Random angular shifts of the center of gravity of the 
laser reference star formed by the laser system at the 
altitude X can be written (Ref. 10), using Eq. (2) and 
making substitution 

I = I(ξ, R + ρ0 (1 $ ξ/X)). 

In the last expression it was taking into account that 
the optical axis of the laser source is shifted by the 
vector ρ0 and tilted from the zenith by the angle 
⏐ρ0⏐/X.   

Let us assume that the focused laser beam is fairly 

wide (such as Ω$1 = ka2
0/X >> 1), and the additional 

laser beam broadening due to the effect of turbulence is 
insignificant.  Here, from an input pupil of the 
principal telescope the laser reference star can be seen 
as a point source.  In case of backward propagation, the 
additional angular image jitter of such spherical wave is 
given by the formula9: 

ϕ
sp
F  = $ 

1
Σ ⌡⌠  

Σ   
   ⌡⌠ d2ρ ∇ρ S

sp(0, ρ). (9) 

Let us calculate the cross-correlation function 
between the random angular image shift of the natural 
star (Eq. (8)) formed by the telescope and the shift of 
the center of gravity of the laser beam formed by the 
tilted laser source (Eqs. (2) and (9)).  This correlation 
was calculated many times in my papers (Refs. 7, 12, 
14, and 17), including calculations with the use of the 
turbulence spectrum model considering the deviation 
from the power law in the range of the large scales of 
turbulence (Ref. 17, 26$31) 

Φn(κ, ξ) = 0.033 C2
n(ξ) κ$11/3 × 

× {1 $ exp ($ κ2/κ2
0)}, (10) 

where C2
n(ξ) is the turbulence intensity on the 

propagation path, κ$1
0 (ξ) is the outer scale of 

turbulence. Considering Ref. 7 and 12, this correlation 
function can be written as the follows: 

<ϕl.b.(ρ0) ϕ
pl
F > = ⎝

⎛
⎠
⎞$ 2π2 0.033 Γ ⎝

⎛
⎠
⎞ 

1
6
  21/3× 
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× R$1/3
0  ⌡⌠

0

X

 dξ C2
n(ξ) (1 $ ξ/X) × 

× 
⎩⎪
⎨
⎪⎧
[1

 
+
 
b2 (1 $ ξ/X)2]$1/6 × 

× 1F1 ⎝
⎜
⎛

⎠
⎟
⎞

 
1
6
 , 1; $ 

d2(1 $ ξ/X)2

(1 + b2 (1 $ ξ/X)2)
 $ 

$ [1 + b2 (1 $ ξ/X)2 + 4c2]$1/6 × 

× 1F1 
⎭⎪
⎬
⎪⎫

⎝
⎜
⎛

⎠
⎟
⎞

 
1
6
 , 1; $ 

d2(1 $ ξ/X)2

(1 + b2(1 $ ξ/X)2 + 4c2)
 . (11) 

Here, the designations are used: b = a0/R0, 

b = ⏐ρ0⏐/R0, c = κ$1
0 R$1

0 , a0 is the initial radius of the 
focused laser beam, and 1F1(...) is the degenerate 
hypergeometric Gaussian function. 

It can be seen from Eq. (11) that the second term 
in curly brackets describes the effect of the outer scale 
of turbulence.  For the infinite outer scale (c → ∞) the 
second term in Eq. (11) can be neglected. Then the 
correlation function assumes the following form: 

<ϕl.b.(ρ0) ϕ
pl
F > = ⎝

⎛
⎠
⎞$ 2π2 0.033 Γ ⎝

⎛
⎠
⎞ 

1
6
  21/3× 

× R$1/3
0  ⌡⌠

0

X

 dξ C2
n(ξ) (1 $ ξ/X) × 

× [1 + b2 (1 $ ξ/X)2]$1/6 × 

× 1F1 ⎝
⎜
⎛

⎠
⎟
⎞

 
1
6
 , 1; $ 

d2(1 $ ξ/X)2

(1 + b2 (1 $ ξ/X)2)
 . (12) 

The case d = 0 corresponds to the monostatic 
scheme of laser reference star formation.  In the 
opposite case (for the bistatic scheme) the condition 
d >> 1 corresponds to the asymptotic for the hyper-
geometric function 1F1(...) then 

<ϕl.b.(ρ0) ϕ
pl
F > = ⎝

⎛
⎠
⎞$ 2π2 0.033 Γ ⎝

⎛
⎠
⎞ 

1
6
  21/3R$1/3

0  × 

× Γ$1 ⎝
⎛

⎠
⎞ 

5
6
  d$1/3 ⌡⌠

0

X

 dξ C2
n(ξ) (1 $ ξ/X)2/3. (13) 

It can be concluded from an analysis of the last 
expression that the correlation between the plane wave 
and the beam decreases approximately to the level 0.1 
when d ≥ 103.  This, in fact, corresponds to the 
limiting case of the bistatic scheme of laser reference 
star formation. 

As numerous experimental data (Refs. 17, 27, 29, 

and 32$35) shows, the outer scale of turbulence κ$1
0 (ξ) 

in the atmosphere is known to be the finite quantity. 
Numerical estimates made by us for different models of 

the vertical profiles of C2
n(ξ) and κ$1

0 (ξ) (Ref. 37) 

showed that for the optical radiation propagating 
through the entire atmosphere an effective outer scale 
of turbulence can be introduced for the atmosphere as a 
whole (in analogy with Ref. 36).  It turned out (see 
Ref. 37) that for intermediate conditions of vision 
(Ref. 38) the value of such an effective outer scale is 
5$60 m.  Then for the telescope with R0 = 4 m the 

parameter c = κ$1
0 R$1

0  = 10. 
Let us analyze asymptotically the effect of the 

outer scale of turbulence on the correlation function 
(Eq. (11)).  We consider the variable d to be argument 
of function (11) and b, c, and X to be its parameters. 
Simple estimates demonstrates that the initial 
correlation (for d = 0), due to the effect of the finite 
outer scale of turbulence (for c < 5), decreases 2$3 
times in comparison with its value for the infinite outer 
scale. With the increase of the argument d (for d >1), 
correlation (11) already does not exceed 0.2.  For 
d > 2c this correlation is about 17 times smaller then 
its value for the infinite outer scale.  And finally, for 
d >> c the correlation <ϕl.b.(d) ϕF> changes its sign and 
the dependence ≈ d$7/3

 is observed. 
Thus, our asymptotic analysis shows that for c < 5 

when the axis of the principal and auxiliary telescopes 

are separated at ρ0 ≥ 2κ$1
0 , we obtain practically 

limiting case of the bistatic scheme. 
To confirm the conclusion of our asymptotic 

analysis, let us do numerical calculations of the 
correlation coefficient 

K(d, b, c, X) = 
<ϕl.b.(ρ0) ϕ

pl
F >

<(ϕl.b.(ρ0))
2> <(ϕ

pl
F )2>

 , (14) 

which is expressed in terms of the correlation function 
(11) and the corresponding variances 

<(ϕpl
F )2> = ⎝

⎛
⎠
⎞2π2 0.033 Γ ⎝

⎛
⎠
⎞ 

1
6
  21/6 R$1/3

0  × 

× ⌡⌠
0

∞

 dξ C2
n(ξ) [1 $ [1 + 4c2]$1/6], (15) 

<(ϕl.b.(ρ0))
2> = ⎝

⎛
⎠
⎞2π2 0.033 Γ ⎝

⎛
⎠
⎞ 

1
6
  21/6 R$1/3

0  × 

× ⌡⌠
0

X

 dξ C2
n(ξ) {(b2 (1 $ ξ/X)2)$1/6 $ 

$ (b2 (1 $ ξ/X)2 + 4c2)$1/6}. (16) 

The calculations were done for the model C2
n(ξ) 

(Ref. 38) corresponding to the intermediate conditions 
of vision.  To the represent the results, the variable d 
characterizing the relative separation of the axes of the 
principal and auxiliary telescopes was chosen as a 
function argument.  The calculations were done for two 
most typical altitudes X = 10 and 100 km, that is 
correspond approximately to the positions of Rayleigh 
and natrium laser reference stars.  The values of the 
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parameter b were chosen equal to 0.1, 0.3, 0.7, 1.0, 3.0, 
and 5.0. 

Practically, the value of the parameter b > 1 
corresponds to the reference star formed by the large 
telescope for the small one.  It can be realized in the 
observatories where the telescopes of different sizes are 
located, for example, in the observatory Mauna Kia, 
where the 10-m Kekk telescope forms in the atmosphere 
the reference star for the telescope of smaller size. 

The values of the parameter c in our calculations 
took the following values: 1, 3, 5, 10, 100, and 1000.  
The case c = 1000 practically corresponded to the case 
of the Kolmogorov turbulence.  The results of 
calculations are shown in Figs. 2 and 3.  Each of the 
figures is represented by six fragments (a, b, c, d, e, 
and f) that correspond to the values 1, 3, 5, 10, 100, 
and 1000 of the parameter c. 

It is interesting to note that our numerical results 
confirm the conclusions of analytical analysis presented 
above. In particular, the following conclusions can be 
drawn based on the results of our calculations: 

For large values of the outer scale (c = 100 and 
1000) transition from the monostatic (d = 0) to the 
limiting bistatic scheme takes place when the separation 
of the axes of the principal and auxiliary telescopes is 
(200$1000)R0, i.e. when d > 200. 

For finite outer scale (c < 5) although for the 
separations of the order of two-three outer scales the 
transition to the limiting bistatic scheme takes place. 

The smaller separations of the telescope axes 
(d < 200R0 or d < c, respectively) yield the 
intermediate case. 

It should be noted here that our calculations differ 
from the calculations done in Refs. 23 and 40, because 
in these papers the angular dependence of the cross-
correlation between two plane waves coming from the 
infinity at different angles was studied.  In particular, 
in our case the correlation coefficient K for the 
argument d = 0 (see Eqs. (11)$(13)) is not equal to $
1.  Only with the increase of the parameters X and c 
the value of K (for d = 0) asymptotically approaches $
1.  First such calculations were done as long ago as 
1980 (Ref. 12), and I should also mention the 
calculations done in Ref. 10. 

It is interesting to analyze the peculiarities in the 
behavior of the correlation coefficient K for small 
values of the parameter c (c = 1, 3, and 5) and for 
large values of the parameter b (b = 3 and 5).  This 
case is observed when a larger telescope forms the 
reference star for a smaller one.  The results (Figs. 2 
and 3) show that in this case the correlation for 
arguments d < c remains practically constant (equal to 
0.4, 0.5, and 0.7, respectively). 

With the increase of the parameter c the 
correlation function K becomes larger-scale: the 
increase of the correlation radius is observed. It should 
be note that analogous effect was established in 
Ref. 25, where the increase of the angular correlation 
radius was recorded with the increase of the outer scale. 

Gradual saturation of the increase of the 
correlation radius also occurs.  For small c (small value 
of the outer scale of turbulence) the correlation K(d) 
decreases down to 0.1 at d = c.  However, for c = 100 
the correlation decreases to 0.1 at d = c/2 and for 
c = 1000 at d = c/10.  This happens for both altitudes 
of 10 and 100 km. 

The change of the sign of the correlation K 
predicted on the basis of the asymptotic analysis (it is 
necessary to return and to computer Eqs. (11) and 
(12)) is caused by the finite outer scale. For small 
values of the outer scale of turbulence (c = 1, 3, and 
5) and d > (2 $ 3)c the correlation K changes its 
sign.  For large values of the parameter c this was 
not established in practice. For the infinite outer 
scale (see Eq. (12)) the correlation coefficient K does 
not change its sign. 

It is very important to found the relation between 
the angular correlation radius of two plane waves (this 
value was calculated in Refs. 25 and 40) and the cross-
correlation radius between the plane wave and the 
Gaussian beam (this characteristic is shown in Figs. 2 
and 3). Then we could use the data of the direct 
astronomic observation of the image jitter of two stars 
seen at different angles predict the cross-correlation 
coefficient for the system telescope $ laser reference 
star and to make correct conclusions about the 
transition of the laser reference star formation system to 
the bistatic regime. Now the simple comparison between 
the curves in Figs. 2 and 3 from the presented paper 
and, for example, the curves in Fig. 2 of Ref. 25 is 
impossible, because the significantly different models of 
the turbulent atmosphere were used in these papers. 

 
ALGORITHM OF OPTIMAL CORRECTION OF 

TOTAL WAVEFRONT TILT 

 

It is well known that the use of the laser 
reference star expands the range of stable operation of 
the adaptive system. However, because the laser star 
is formed at a finite distance, the correction of the 
data of optical measurements of the laser star is 
necessary to provide efficient distortion correction for 
the natural astronomic objects. I consider the 
investigations of the possible of the improvement of 
the correction of atmospheric distortions using the 
atmosphere models to be very important (Refs. 20, 
22, and 39). Using the atmospheric turbulence 
models, we can: 

a) to estimate the value of the turbulent 
distortions above the reference star and hence to 
determine the optimal altitude of the star formation, 

b) to compensate partially the focus isoplanatism 
for the system operating with the reference star located 
at a finite distance in the atmosphere, 

c) to choose the optimum scheme of forming the 
laser reference star, 

d) and finally, to improve the estimation of the 
reference star total wavefront tilt. 
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FIG. 2. Correlation index (without sign accounting) of the random angular shifts of the image center of gravity of 
the normally falling plane wave and angular shifts of the center of gravity of the laser focused beam tilted 
relatively to the telescope axis for the height of formed laser reference star u  = 10 km. 
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FIG. 3. Correlation index (without sign accounting) of the random angular shifts of the image center of gravity of 
the normally falling plane wave and angular shifts of the center of gravity of the laser focused beam tilted 
relatively to the telescope axis for the height of formed laser reference star u  = 100 km. 
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Undoubtedly, the use of the laser reference star 
formed in the atmosphere on the basis of a 
backscattered signal is connected with the problem of 
the choosing the optimal algorithm of using the data of 
optical measurements for the correction of the random 
jitter of the star images.  We suggest to develop up the 
algorithm for the correction of the star image jitter in 
the form (Ref. 20) 

ϕ
pl
F  $ Aϕm, (17) 

providing by the choice of the coefficient A the 
minimum variance of the residual distortions 

<β2> = <(ϕpl
F  $ Aϕm)2> = <(ϕpl

F )2> + 

+ A2 <(ϕm)2> $ 2A <ϕpl
F  ϕm>. (18) 

Calculating the minimum for the variance given by 
(Eq. 18),  

<β2>min = <(ϕpl
F )2> $ <ϕpl

F  ϕm>2/<(ϕm)2>, (19) 

we have correction coefficient A is expressed only in 
terms of deterministic functions in the following way: 

A = <ϕpl
F  ϕm>/<ϕ2

m>. (20) 

From the form of this correcting coefficient A, we can 
conclude that this optimization factor can be obtained 
directly in optical experiment using the data of direct 
measurements.  The calculations of the correction 
coefficient for turbulent atmospheric models using 
Eqs. (20), (9), (12), and (13) is another alternative 
way. 

It should be noted that the conventional correction 
algorithm (17), when the coefficient A = $1, naturally, 
does not provide the minimum of variance (18).  In 
order to confirm this, let us compare the residual 
variance for the optimal and nonoptimal correction 
algorithms. 

In the experiment, as a rule, we have only the 

data of measurements ϕ
m
, because the vector ϕ

pl
F , 

characterizing the angular jitter of the natural star, 
whose image should be corrected, cannot be measured 
so far, because the star illuminance is insufficient for 
measurements with a wavefront sensor.  In this 
situation, this optimal coefficient A can be calculated 
using Eq. (20) for the model vertical profile of the 
turbulence (Ref. 39). 

In our designations the minimum dispersion of the 
residual fluctuations of the angular shifts of the star 
images for the scheme shown in Fig. 1 can be estimated 
using the following formula: 

<β2>min = <ϕpl
F )2> × 

× 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1 $ 

21/3 f(X, b, d, C2
n)

⎣
⎢
⎡

⎦
⎥
⎤1 + b

$1/3
 $ 2

7/6
(1 + b2)

$1/6
1F1 

⎝
⎜
⎛

⎠
⎟
⎞1

6
 , 1; $ 

d2

(1 + b2)

, (21) 

where the function 

f(X, b, d, C2
n) =

⎝
⎜
⎛ 

 
⌡⌠
0

X

 dξ C2
n(ξ) (1 $ ξ/X) × 

×
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⎨
⎪⎧ 

 
[1 + (1 $ ξ/X)2]$1/6 $ 

$ [1 + (b2 (1 $ ξ/X)2]$1/6 × 
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1
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⎦
⎥
⎤

⌡⌠
0

X

 dξ C2
n(ξ) (1 $ ξ/X)5/3 ⌡⌠

0

∞

 dξ C2
n(ξ)  

$1

 (22) 

depends on the parameters of optical experiment and 
the atmospheric model (these formulas are written 
under assumption of the infinite outer scale).  As 
numerical analysis of the last formulas shows 
(Ref. 21), the optimal correction allows to decrease 
slightly the residual angular distortions in comparison 
with the conventional scheme. 

To demonstrate the effect from the use of the 
optimal algorithm, we give here only Table I that 
demonstrates the values of the residual angular 
distortions for the telescope operating with the 
bistatic reference star. Therewith it was assumed that 
the reference star can be considered as a point source. 
For optimal and nonoptimal correction algorithms, in 
the third and forth columns of the table the values of 
the normalized variance of the residual angular 

distortions <β2> min/<(ϕpl
F )2> are given. The values 

of the coefficient A calculated for the turbulence 
model (Ref. 38) are given in the fifth column.  It can 
be vividly seen from the table that the optimal 
correction using the optimizing coefficient calculated 
for the turbulent atmospheric model allows to 
decrease more then twice the value of the residual 
distortions, whereas the conventional algorithm (i.e., 
when A = $1) in some cases even increases the 
residual distortions. 

Thus, the optimal correction based on the data 
about the vertical profiles of the turbulence is 
efficient, whereas the conventional (nonoptimal) 
correction in some cases may even increase the 
distortions.  However, it should be noted that the 
obtained levels of the residual distortions are too 
large to recommend this correction for the 
experiments. 

In this connection, we can conclude that the use 
of various hybrid schemes may cardinally increase the 
quality of the total wavefront tilt correction (Refs. 3, 
25, and 41). 
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TABLE 1. Comparison of the algorithms for optimal 
and nonoptimal correction of the random wavefront 
shifts for the limiting bistatic scheme of formation of 
the laser reference star. 

 

  Residual level of angular 
distortions 

 

X, km b Optimal 
algorithm 

Nonoptimal 
algorithm 

A 

8 0.3 0.640 1.291 $ 0.427
 0.5 0.603 1.105 $ 0.471
 0.7 0.578 0.999 $ 0.500
 1 0.552 0.899 $ 0.532
 2 0.500 0.736 $ 0.593
 3 0.471 0.656 $ 0.628
 5 0.434 0.570 $ 0.671

20 0.3 0.612 1.354 $ 0.420
 0.5 0.572 1.148 $ 0.463
 0.7 0.545 1.030 $ 0.492
 1 0.516 0.918 $ 0.523
 2 0.461 0.736 $ 0.583
 3 0.429 0.647 $ 0.618
 5 0.330 0.551 $ 0.660

40 0.3 0.602 1.406 $ 0.413
 0.5 0.561 1.187 $ 0.456
 0.7 0.533 1.062 $ 0.484
 1 0.504 0.944 $ 0.515
 2 0.447 0.751 $ 0.574
 3 0.414 0.657 $ 0.608
 5 0.374 0.556 $ 0.650

80 0.3 0.600 1.446 $ 0.407
 0.5 0.558 1.22 $ 0.450
 0.7 0.531 1.091 $ 0.478
 1 0.501 0.969 $ 0.508
 2 0.443 0.769 $ 0.567
 3 0.410 0.672 $ 0.600
 5 0.370 0.567 $ 0.641

100 0.3 0.599 1.455 $ 0.406
 0.5 0.588 1.227 $ 0.448
 0.7 0.530 1.097 $ 0.477
 1 0.501 0.974 $ 0.507
 2 0.443 0.774 $ 0.565
 3 0.410 0.676 $ 0.598
 5 0.370 0.570 $ 0.639
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