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Wandering and turbulent broadening of a laser beam is studied by the Monte 

Carlo method.  Phase screens constructed by the modified subharmonic method are 

used to simulate atmospheric turbulence.  The outer scale of atmospheric turbulence 

reproduced by a phase screen is estimated.  The results of statistical experiments 

for propagation of collimated and focused laser beams are compared with the 

analytical estimates and data of field experiments. 
 

Large-scale spatial inhomogeneities of the air 
refractive index cause wandering of a beam as a whole.  
Efficiency and reliability of optical systems 
significantly depend on fluctuations in the direction of 
radiation propagation, so the study of this effect is of 
great practical importance. 

At present, the Monte Carlo method (MCM) 
based on the phase screen model (PSM)1 is a widely 
spread technique in the theoretical study of wave 
propagation in randomly inhomogeneous media.  The 
method is most developed in papers on optics of 
turbulent atmosphere.  This approach is used to study 
strong intensity fluctuations of a plane wave,2,3 
bounded light beams,4 spatial statistics of a powerful 
laser radiation in the atmosphere,5 and adaptive 
optics.6$8 

According to the PSM, laser beam propagation is 
considered as a process of its sequential passing through 
a set of phase screens simulating random perturbations 
of the wave front by fluctuations in the refractive index 
of a continuous medium.  So, numerical formation of 
the phase screens with a given fluctuation statistics is 
the key problem of such studies. 

To form a phase screen, one usually uses the 
spectral method9 or, less frequently, the method of 
moving summation.10  According to the spectral 

method, the random phase ∼ϕ(x, y) is calculated by 

filtration of the Gaussian pseudorandom field ∼η(x, y).  
The transfer function of the filter is defined by  
spatial spectrum of phase fluctuations Fϕ(i⊥) where i⊥ 
is the frequency of the transverse spectral components 

of the phase ∼ϕ(x, y).  According to the method of 

moving summation, ∼ϕ(x, y) is determined by 

summation of the field ∼η(x, y), with the weights 
related to Fϕ(i⊥), being shifted along the numerical 
grid.  In these methods, the largest spatial scale of 
phase fluctuations is close to the grid cell size A = N⋅h,  
 

where N is the number of the grid nods, h is the grid 
step.  So they are not applicable to the study of beam 
wandering in the atmosphere. 

According to the modal approach, the phase is 
formed as a superposition of Zernike modes.11  In the 
modal method, the formation of the screen phase begins 
from large-scale fluctuations, whereas in the spectral 
method it begins from small-scale ones.  So, if the 
dimension of the array of basic functions (i.e., Zernike 
modes in the modal method or Fourier harmonics in the 
spectral method) is bounded, the modal method 
adequately reproduces large-scale phase fluctuations, 
while the spectral method and method of moving 
summation reproduce small-scale fluctuations.12  Using 
these methods for generating phase screens to be 
applied to the problems of turbulent atmosphere optics 
imposes significant restrictions upon the range of 
spatial scale of the atmospheric inhomogeneities. 

The possibility of constructing the phase screen in 
a wide range of atmospheric fluctuation scales on the 
basis of combination of the spectral and modal methods 
was discussed in Ref. 13. 

To widen the range of the spectral method 
applicability to large-scale fluctuations, the algorithm 
of imbeded grids and the subharmonic method are 
proposed in Ref. 14 and Ref. 15, respectively.  
Modification of the methods16 significantly improves 
the reproduction accuracy for low-frequency spatial 
fluctuations on a phase screen. 

In this paper, we study wandering and turbulent 
broadening of a laser beam by MCM in which, to 
simulate the atmospheric turbulence, phase screens 
constructed by the modified subharmonic method are 
used.  The outer scale of the atmospheric turbulence 
reproduced by a phase screen is estimated.  The results 
of statistical experiments for propagation of collimated 
and focused laser beams are compared with the 
analytical estimates and data of field experiments. 
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PHASE SCREEN 

 
The spectrum of phase fluctuations on a screen is 

set by the expression 
 

Fϕ(i⊥) = 2πk2 Δz Φn(i⊥,0) ,   i⊥
2 = ix

2 + iy
2 ,  (1) 

 
where Δz is the thickness of the turbulent layer 
replaced by the phase screen.  The contribution of 
large-scale atmospheric perturbations determining the 
beam wandering along the path is described using von 
Karman model for the spatial fluctuation spectrum of 
the refractive index, Φn(i⊥; iz) 
 

t n(i⊥, iz) = 0.033 Cn
2(i2 + i0

2)$11/6 ; 

i
2 = i⊥

2 + iz
2 ,    i0

2 = (2π/L0)2 ,  (2) 

 
where L0 is the outer scale of the atmospheric 
turbulence. 

Random phase values for the light field of a beam 
are reproduced on a numerical grid in the plane XOY 
perpendicular to the propagation direction.  For the 
isotropic turbulence, it is natural to take a square grid 
with the step h and aperture A along the axes x and y. 

According to the spectral method, the algorithm of 

the phase ∼ϕ(n, m) formation on the grid is as follows: 
 

ϕ
∼
(n, m) = 

= 

1
N ∑

p= $(N/2)+1

(N/2)

       ∑
q= $(N/2)+1

(N/2)

     apq(ξ
∼
pq + iη

∼
pq)WN

pn
 WN

qm
 ; 

 

apq = Fϕ(p, q) Δi ;    WN = exp {i 2π/N} ; 

Fϕ(p, q) = F(Δi p, Δi q) ,  (3) 
 

where ξ
∼
pq, η

∼
pq are the statistically independent random 

numbers distributed according to the Gaussian law 
(0, 1); Δi = 2π/A is the spectral interval between 
harmonics of the discrete spatial phase spectrum 
Fϕ(p, q); N = A/h is the number of the grid nodes 
along the x and y axes.  The real and imaginary parts 

of the complex phase ∼ϕ(n, m) yield two statistically 
independent fields with the spatial spectrum Fϕ(p, q). 

In the problem considered, the coefficient a00 is 
assumed to be zero because the zero harmonic i00 in the 
spectrum Fϕ(p, q) represents the mean phase shift on 
the screen.  The shift does not influence statistical 
properties of radiation.  In the plane ix, iy, the vector 
of lowest frequency (p, q = ±1) of the spatial spectrum 
i11 is defined by the coordinates 

 
i11 = (±Δi, ±Δi) .  (4) 
 

High calculation efficiency which can be reached 
using the FFT algorithm is an advantage of the spectral 
method.  False correlation arising at the scale l ≥ A/2 

for the field ∼ϕ(n, m) is its shortcoming.  So, the 
method does not permit one to form fields whose 
largest correlation scale does not exceed A/2.  For the 
Karman spectrum of atmospheric turbulence, the 
applicability of the spectral method is conditioned by 
the following expression for the outer scale L0: 
 
L0 < A/2 .  (5) 
 

At the same time, reproduction of small-scale 
distortions in the beam profile is possible if the step h 
is much less than the beam radius a0: 

 
h << a0 .  (6) 

 
Since usually a0 << L0, simultaneous fulfillment of the 
conditions (5) and (6) in a numerical experiment 
imposes significant restrictions on the range of spatial 
scales of atmospheric fluctuations. 

In the subharmonic methods,16 the spatial scale of 
phase fluctuations is wider in the low-frequency range.  
The resulting field is represented as a sum of the high-

frequency part ∼ϕhf obtained using usual spectral method 

and the low-frequency part ϕ
∼

lf formed by subharmonics: 
 

ϕ
∼

 (n, m) = ϕ
∼

hf (n, m) + ϕ
∼

lf (n, m) .  (7) 
 

To obtain ϕ
∼

lf , the spectral range near the zero 
harmonic is divided into several subharmonics. 

In the modified subharmonic method,16 the low 
frequency part of the phase field is formed in 
accordance with the algorithm 
 

ϕ
∼

lf(n, m) = 
1
N ∑

j = 1

Nj

  ∑
p′ = $3

2

    ∑
q′ = $3

2

 ap′q′(ξ
∼
jp′q′ + iη

∼
jp′q′) × 

× exp ⎣
⎡

⎦
⎤2πi3$j ⎝

⎛
⎠
⎞(p′ + 0.5)

N
 + 

(q′ + 0.5)
N

 ;  (8) 

 

ap′q′ = 3$j Fϕ(ix′ , iy′) Δix Δiy , 

 
where Nj is the number of subharmonic iterations. 

At each jth iteration, the phase spectrum is 
completed with 32 harmonics for which the spatial 
frequency vector i, in the plane ix, iy, is determined 
by the coordinates 

 

ix
′ = 3$j (p′ + 0.5) Δix , 

iy
′ = 3$j (q′ + 0.5) Δiy .  (9) 

 
The subharmonics Fϕ(i ′x, i ′y) with the indices 

(p′, q′) equal to (0, 0), ($1, $1), (0, $1), and ($1, 0) 
are assumed to be zero.  Since the spectral ranges of 
subharmonics and main spectral components overlap, 
one introduces weight factors for the main harmonics 
with the indices (p, q) equal to (±1, 0) (0, ±1), and 
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(±1, ±1) in order to keep the variance of the screen 
phase constant. 

To analyze correlation properties of fields obtained 
by the modified subharmonic method, we have 
performed a numerical experiment in which the 
correlation function of the screen phase is calculated by 
the Monte Carlo method 

Bϕ
Num(ρlk) = Bϕ

Num( l2 + k2
 h) = 

1
M(N $ l) (N $ k)

 × 

× ∑
i = 1

M

  ∑
m = 1

N $ l

  ∑
n = 1

N $ k

 ϕ
∼(i)(m, n) ϕ

∼*(i)(m + l,n + k),  (10) 

where M is the number of field realizations.  We used a 
square grid with the size A = 51.2 cm 512×512 nodes.  
The field was generated by the spectral method and 
modified subharmonic method with the number of 
iterations j = 2, 4.  Large number of iterations for grids 
of such a size requires too long computer time.  We 
considered a field with the Karman spectrum (2)  
with the structure constant C2

n = 5⋅10$15 cm$2/3.  In 
generating the phase screen, three different values  

of the outer turbulence scale were used, L0
apr = 0.5 m, 

5 m, and 50 m. 

Correlation functions Bϕ
Num obtained numerically 

are presented in Figs. 1a and b for several a priori 

values of L0
apr.  One can see that, if L0

apr ≤ A/2, the 

number of iterations Nj in the subharmonic method 

influences Bϕ
Num only insignificantly.  However, if  

L0
apr > A/2, the function Bϕ

Num and the position of the 

function with respect to the axis of ordinates, and, 

consequently, the variance σϕ
2 significantly vary with 

increasing Nj.  This follows from the fact that the outer 
scale L0 for the screen phase field obtained in the 
numerical experiment varies with increasing Nj. 

The outer scale L0 for the phase screen formed by 
the subharmonic method was determined as the 

parameter such that the function Bϕ
Num obtained by the 

Monte-Carlo method is most closely approximated by 
the analytical expression for the screen correlation 
function Bϕ(ρ) and the field (2).  Analytically, the 
correlation phase function on the screen for Karman 
spectrum (2) with the outer scale L0 has the form 

Bϕ(ρ) = σϕ
2 

21/6

Γ(5/6)
 (i0ρ)5/6 K5/6(i0ρ) ,  (11) 

where Γ($) is the gamma function; K($) is the 
McDonald function.  The variance of the phase 
fluctuations is equal to 

σϕ
2 = 2.4π2k2Δz⋅0.033 Cn

2 i0
$5/3.  (12) 

Since periodicity is characteristic of the fields 
obtained by spectral methods, the deviation  
 

(Bϕ
Num $ B0)2 was minimized for ρ ∈ [0, A/2].  

Figure 1 presents some results of approximating the 

function Bϕ
Num obtained using MCM by the analytical 

expression Bϕ(ρ) depending on the parameter L0.  The 
approximation was performed by the least squares 
method.  Analysis demonstrates that satisfactory 

approximation of Bϕ
Num by Bϕ(ρ) is reached with the 

iteration number Nj such that the obtained value of the 

outer scale L0 is close to the a priori L0
apr (see the 

fragment in Fig. 1b). 

 
a 

 
b 
 

FIG. 1.  Correlation function (a, b) of the phase on the 
screen obtained by the modified subharmonic method at 
a square 515×512 grid of 51.2 cm size for Karman 
spectrum (2) with C2

n = 5⋅10$15 cm$2/3, a preset outer 

scale L0
apr and number of iterations Nj: Bϕ

Num obtained by 

MCM (__

•
__); Bϕ(ρ) as approximation by the analytical 

expression (11) with the parameter L0 (
_____). 
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The Table I presents the values of the outer scale 

L0 and the variance σϕ
2 for a screen formed by the 

subharmonic method, for different number of iterations 
Nj and the turbulence characterized by several a priori 

values of L0
apr and Cn

2 = 5⋅10$15 cm$2/3. 
 

TABLE I. 
 

Number of 
iterations 

A priori values L0
apr / σϕ

2apr 

Nj 50 cm/19.6 5 m/907.6 50 m/42126.1

0 44 cm/15.8 71 cm/37.9 71 cm/35.4 
2 48 cm/18.2 5.5 m/1055.3 12 m/4066.3
4 46 cm/16.8 4.7 m/815.7 45 m/35865.7
 

As is seen from the table, the fields obtained  
by the spectral method Nj = 0 correspond to the  

set statistics only if the outer scale L0
apr does not  

exceed the grid size A/2. To reproduce larger  
scales, one should use the subharmonic method.   
The number of iterations Nj used increases with 

increasing outer scale L0
apr. 

 
VARIANCE OF SHIFTS IN THE POSITION OF A 

COLLIMATED BEAM GRAVITY CENTER UNDER 

CONDITIONS OF LARGE-SCALE FLUCTUATIONS 

 

The random position of the center of gravity of an 
optical beam in a plane transversal to the propagation 
direction is defined by the expression 

∼
ρc

(i)(z) = 
1
P0

 ⌡⌠ 
 d2ρ ρ 

∼
I(i)(z, ρ),  (13) 

where P0 = ⌡⌠ 
 d2ρI(0, ρ) is the full power of the beam; 

 ~
I(i)(z, ρ) is the random intensity distribution over the 
beam cross section.  The variance of the beam shifts σ2

c 
was determined as a result of statistical processing of 
the data array {~ρ(i)

c (z), i = 1...M} where M is the 
sample size. 

The numerical experiment was performed for a 
collimated Gaussian beam of radius a0 = 2 cm 
propagating along a horizontal near-land path of length 
L = 2 km, the radiation wavelength being λ = 0.5 μm.  
The parameters of turbulence and calculation grid are 
presented above, the number of iterations is Nj = 4.  
For the considered conditions of the beam propagation, 
the guaranteed experimental results covered the ranges 
of both weak and strong turbulent broadening. 

A typical sample of the intensity distribution  
~
I(i)(z, ρ) over the beam cross section is presented in 
Fig. 2 for the distance z = 1.5 km. 

The root-mean-square deviation σc of the center of 
gravity of the beam is presented in Fig. 3 as a function 
of the turbulence parameter Ds(2a0), where Ds(2a0) = 

= 1.1 Cn
2 k2 L(2a0)5/3.  One can see that the beam 

wandering increases with the increase of the turbulence 
outer scale L0. 

 
 

FIG. 2.  Typical sample of the intensity distribution  
~
I(i)(z, ρ) over the cross section of a collimated beam 
with the initial radius a0 = 2 cm, λ = 0.5 μm.  The 
beam propagates along a near ground path, the 
turbulence parameter is C2

n = 5⋅10$15 cm$2/3 for 
z = 1.5 km. 
 

To verify the analytical theories, the results of 
statistical experiments were compared with the 
calculations made using phase approximation of the 
Huygens$Kirchhoff method (PAHKM).17  Under the 
conditions 
 

0 ≤ L/F ≤ 1 ,    Ω ≥ 1 ,  (14) 
 

where F is the focusing radius of the Gaussian beam; 

Ω = ka0
2 /L is the Fresnel number of the transmitting 

aperture, the approximation yields the following 

expressions for σ“
2: 

at β0
2 << Ω1/2  

 

σ“
2 = a0

2 ξ1(Ω, L/F, β) Ds(2a0) + 

+ a0
2 ξ2(Ω, L/F, β) Ds

2(2a0) ; 

ξ1(Ω, L/F, β) = 1.17 Ω$2 a0
1/3 × 

× ⌡⌠
0

1

 
 dζ(1 $ ζ)2 {ag

$1/3(ζL) $ [ag
2 + a0

2β]$1/6} ; 

 

ag(ζL) = ζ a0 Ω$1 ⎣
⎡

⎦
⎤

1 + Ω2 ζ$2
⎝
⎛

⎠
⎞1 $ ζ 

L
F

2 1/2

; 

 

ξ2(Ω, L/F, β) = 

= 0.24Ω$10/3 ⌡⌠
0

1

 
 dζ(1 $ ζ)2 ζ7/3 ⎝

⎛
⎠
⎞1 $ ζ 

L
F

$5/3

× 

× ⌡⌠
0

1

 
 dη(1 $ η)10/3 ⎝

⎛
⎠
⎞1 $ ζη 

L
F

$5/3

; 
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a 

 
b 

 
c 

FIG. 3.  The rms deviations σc of the center of gravity 
as functions of the turbulence parameter D1/2

s (2a0) 
obtained by MCM for a collimated beam with the initial 
radius a0 = 2 cm, λ = 0.5 μm.  The beam propagated 
along a near-ground path, the turbulence parameter C2

n

 = 5⋅10$15 cm$2/3 (curves with dots).  The curves 1, 2, 
and 3 are calculated by Eqs. (15), (16), and (17); the 
validity domains for the expressions are denoted by 
Roman figures I, II, and III; L0 = 50 m (a); L0 = 5 m 
(b); L0 = 50 cm (c). 

β0
2 = 1.23 Cn

2 k7/6 L11/6 ; 

β = (0.54L0)2 / (2π2a0
2),  (15) 

 
at Ω5/3 << Ds(2a0) << Ω5/3(1 + β)5/6 
 

σ“
2 = 1.54 a0

2 Ω$5/3 Ds
4/5(2a0) $ 

$ 1.79 a0
2 Ω$11/8 Ds

5/8(2a0) ,  (16) 

 
at Ds(2a0) >> Ω5/3(1 + β)5/6 
 

σ“
2 = a0

2 Ω$11/8 Ds
5/8(2a0) 1.79[(1 + β)7/48 $ 1] + 

+ a0
2
 Ω$3/2

 Ds
1/2(2a0) {β$1/6[(1 + β)1/12

 $ 1]/2}. 
(17) 

 
The curves 1, 2, and 3 are calculated analytically 

by formulas (15), (16), and (17); the Roman figures I, 
II, and III show the domains where the expressions are 
valid.  One can see that the analytical curve coincides 
with the results of the numerical experiment in the 
domain I corresponding to weak turbulence.  The best 
coincidence is observed for the outer scale 5 m for 
which the analytical curve 1 behaves well in the 
domain II.  For L0 = 50 cm, the applicability criterion 
(15) becomes incorrect.  The discrepancy between the 
functions obtained analytically and by MCM are 
observed near the boundary of the domain.  In Ref. 18, 
another estimate of the applicability range is presented 
by formula 

 
Ds(2a0) << Ω4/3 (1 $ (1 + β)$1/6) .  (18) 

 
In this case, the right-hand side boundary of the 

domain I corresponds to the value Ds(2a0) ≈ 4. 
The analytical expression (16) for σ2

c does  
not depend on the turbulence outer scale what is  
not confirmed in the numerical experiment.  For  
D1/2

s (2a0) = 9, the value σc varies from 1.1⋅10$2 m 
(L0 = 50 cm) to 1.8⋅10$2 m (L0 = 50 m).  The theory 
predicts a stronger growth of the function σc(D1/2

s ). 
In the domain III, the analytical and numerical 

values of σc differ strongly (≈40%).  If the outer scale 
decreases from 50 to 25 cm in Eq. (17), the discrepancy 
does not exceed 5% (curve 3′ in Fig. 3c).  This can be 
explained by the fact that the expression (17) is a 
asymptotic.  With the decrease of L0, β also decreases 
and, consequently, the inequality defining the 
applicability of Eq. (17) is fulfilled better. 

 
FOCUSED BEAM 

 
In the numerical experiment we simulated field 

investigations of the shift variance and broadening of a 
laser beam in the turbulent atmosphere.19  We have 
considered a strongly focused Gaussian beam of the 
initial radius a0 = 15.1 cm.  The beam propagated  
along a path at a height H = 2 m to the distance 
L = F = 1750 m.  The focusing radius was 1/130 of the 
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diffraction length, the wavelength was λ = 0.63 μm.  
The beam rms shift σc and the efficient radius aeff were 
measured at the geometric focus for two values C2

n 
equal to 3⋅10$15 cm$2/3 and 1.5⋅10$14 cm$2/3.  The 
radius aeff in the field experiment was determined as 
the half width of the beam profile averaged over 100$
300 instant responses. 

 
a 

 
b 

FIG. 4.  Numerical MCM simulation of a field 
experiment19 for a focused Gaussian beam 
(a0 = 15.1 cm, λ = 0.63 μm, H = 2 m, L = F = 1750 m) 
for C2

n = 3⋅10$15 cm$2/3 and 1.5⋅10$14 cm$2/3 (dots).  
The "+" signs denote the data of the field 
experiment.19  The rms shift of the beam σc (a); the 
ratio of the efficient radius of the beam aeff to its 
diffraction radius ad. 

 

The numerical experiment was performed with 
1024×1024 grid, in order to guarantee high spatial 
resolution (the diffraction radius of the beam at the 
focus is ad = 1.16 mm).  The phase screens were 
generated by the modified subharmonic method with 
the number of iterations Nj = 2.  This number of 
iterations was sufficient to reproduce the outer scale 
L0 = 0.4H = 0.8 m on the grid of size A = 1 with a 
good accuracy.  The path involved 20 screens, the 

statistical ensemble consisted of 50 realizations.  As is 
seen from Fig. 4, the numerical results well agree with 
the data of the field experiment for two strongly 
different values of the parameter Ds(2a0).  This permits 
one to speak about the reliability of the results 
obtained by MCM. 

 

CONCLUSION 

 

We have analyzed the phase screens obtained by 
the modified subharmonic method.  It is demonstrated 
that two subharmonic iterations are sufficient to 
reproduce the outer scale of atmospheric turbulence 
exceeding the size of the numerical grid no more than 
by 10 times.  Four iterations in the subharmonic 
method make it possible to reproduce the phase screens 
within good accuracy for turbulence with the outer 
scale exceeding the grid size by 100 times. 

In the range of weak turbulent broadening (15), 
analytical estimates of the shift variance for the center 
of gravity of the beam coincide with the results of 
statistical experiments for large values of the outer 
scale L0 = 5 m and significantly differ for L0 = 50 m. 

In contrast to analytical calculations in PAHKM, 
numerical experiments in the range of strong turbulent 
broadening (16) demonstrate significant dependence of 
the shift variance of the beam center gravity on the 
outer scale.  For the turbulence outer scales 50 cm and 
50 m, the variance values differ by 60%.  In the range 
(17), to agree with the analytical data, the strong 
inequality must be fulfilled with a reserve of two 
orders. 

Statistical simulation of one of the field 
experiments19 shows a good agreement between the 
numerical and experimental values of the shift variance 
and efficient size of the beam. 
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