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We describe here a computer code created based on geometric optics approach 

that enables one to numerically calculate light scattering from nonspherical 

particles of arbitrary shape. To demonstrate the capabilities of the approach 

proposed we present here some results on differential cross-section of light 

scattering and elements of scattering phase matrix calculated for model particles of 

a complicated shape. 

 
In recent years the problem of light scattering by 

ice crystals that are often met in cloud particle 
ensembles has attracted much attention of researchers 
in atmospheric optics.1 On the one hand this is caused 
by the fact that a correct calculation of the Earth’s 
heat balance and, as a consequence, of models for long-
term weather forecast, needs for a more accurate setting 
of cloud scattering phase functions (or matrices) that 
would allow for contributions coming into the light 
scattering from crystal particles in addition to that 
from water droplets.2 On the other hand crystal 
particles, if present in clouds, strongly complicate  
return signals at lidar sensing thus making it necessary 
to know scattering phase matrices of cloud crystal 
particles.3$7 

Since normally crystal particles in clouds are 
much larger than the wavelength of light, it seems to 
be quite natural to solve the problem on light 
scattering by such particles in a geometrical optics 
approximation. Besides, one must take into account the 
variety of shapes of ice crystals that may be very 
complicated due to the agglomeration of crystals. 

We present  here a computer code that we have 
developed for making calculations of light scattering 
from nonspherical particles of a complicated shape. We 
called the program LASPAS (Large Angle Scattering by 
Particles of Arbitrary Shapes). It realizes an algorithm 
of the geometrical optics approximation. This program 
uses the ray tracing method. The idea of this method is 
in tracing scattering events for a large number of rays 
on a nonspherical particle that is arbitrarily oriented in 
space. In so doing we assume the incident wave to be 
plane and, in the general case, elliptically polarized. 
We also assume that particles only weakly absorb the 
light, what is quite justifiable for ice crystals in clouds. 
Using this program we are  
 

able to calculate the Stokes vector-parameter of a 
scattered wave, which then is used in calculations of 
scattering phase matrix. 

 

GEOMETRY OF THE LIGHT SCATTERING 

MODEL USED 

 

The geometry of a light scattering event we used 
in constructing the calculation algorithm is shown in 
Fig. 1. The shape of a particle is set in a spherical 
coordinate system by the r(θ, ϕ), 0 < r ≤ rmax, 0 ≤ θ ≤ π, 
0 ≤ ϕ ≤ 2π. In addition, we introduce a Cartesian 
coordinate system with the origin at the origin point of 
the spherical coordinate system being placed inside the 
particle. The orientation of a particle is set by rotating 
it about the axes of the Cartesian system of 
coordinates. The direction of light incidence coincides 
with the positive Z semiaxis. The parameters of light 
scattering (differential cross-section of scattering and 
Stokes vector-parameters of scattered light) are 
calculated in the spherical coordinate system. 

 

 

 

FIG. 1. The coordinate system used in calculations. 
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RAY TRACING TECHNIQUE  

 

We assume the incident wave to be elliptically 
polarized. The electric field vector of each incident ray 
is presented as follows: 

 

E(i) = A(i) exp (iks(i) r), (1) 

 

where s(i)
 = (0, 0, 1) sets the ray direction A(i)

 = 

= (Ax
i , Ay

i , 0) is the complex amplitude whose 

components are Ax
i  = =. exp(iδx), Ay

i  = =y exp(iδy).  
The real phases δ. and δ3 determine the polarization 
state of the incident beam electric vector; the real 
amplitudes =. and =3 are chosen in the way to make the 
intensity of each beam to be unit. Similarly to 
expression (1) we define the electric field vectors of the 
reflected and refracted rays. In so doing we find the 
directions of the refracted and reflected rays in 
accordance with the corresponding laws of refraction 
and reflection. The amplitudes of electric vectors of 
reflected and refracted rays undergo transformations 
according to Fresnel formulas.10 

The basic characteristics of light scattering that 
are calculated with this program are the differential 
cross-section of scattering and the Stokes vector-
parameter of scattered radiation. The LASPAS program 
uses the ray tracing method in the following way. First 
the program sets the initial or starting point 
p1(x1, y1, z1) for each incident ray. The starting point 
is at some distance from a particle in a plane that is 
perpendicular to the direction of propagation (see 
Fig. 2). 

 

 

 

FIG. 2. The method of ray tracing. 
 
The starting point is chosen in the region formed 

by the particle projection onto this plane. The 
coordinates x1 and y1  are drawn using the Monte Carlo 
method in order to achieve a uniform distribution of the 
starting points over the above  
 

mentioned region. Then the second point, 
p2(x2, y2, z2), is  projected for that ray on the sphere 
around the particle. Normally, the ray does not reach 
this point because of the particle surface, except for the 
case of grazing incidence.  

The distance between the points P1 and P2 is 
divided into a number of steps (typically 200 to 300). 
When moving along a preset direction the program 
checks, at each next step, the position of the current 
point to identify whether it is inside or outside the 
particle. In so doing one  numerically determines  exact 
coordinates of the point where the ray crosses the 
particle surface. After that the external normal to the 
surface at this point is identified. In the general case 
this is done numerically. Then the program calculates, 
using the refraction and reflection laws and Fresnel 
formulas, the refracted and reflected rays.  Similarly, 
the refracted and reflected rays are then traced along 
the their propagation directions until they cross  either 
the particle surface or the sphere around the particle. 
This routine runs until the ray energy decreases down 
to a threshold value. In the case when the ray 
trajectory is formed by multiply occurring total 
internal reflections the ray amplitude may fall off very 
slowly. In that case the program imposes a restriction 
on the number of ray reflections from the particle 
surface. Thus it is clear from what has been said that 
any incident ray produces a whole cascade of rays 
coming out of the particle. The rays that reach the 
small sphere around the particle make up the scattered 
field. To calculate the field scattered by a particle we 
divide the space around the particle into solid angle 
domains using the following rules: 

 

ΔΩkl = sinθk Δθ Δϕ, 

Δθ = π/M, Δϕ = π/M; θk = Δθ/2 + Δθk; 

ϕl = Δϕ/2 + Δϕl ; (2) 

k = 0,1, ... , M $ 1; l = 0,1, ... , M $ 1, 

 

where M is the θ by ϕ grid dimensionality.  In the 
program this value may vary from 100 to 500. 

Let us designate the total energy of rays that 
propagate within the solid angle ΔΩkl, as Δεkl. Then the 

intensity, Ikl
(s)

, of radiation scattered within this solid 
angle is as follows: 

 

Ikl
(s)

 = 
 Δεkl 

ΔSkl
 = 

Δεkl 

R2 ΔΩkl
 ,  (3) 

 

where ΔSkl is the area of a surface portion on the 
sphere confined within the solid angle; R is the radius 
of a sphere in the wave zone. The intensity of incident 
radiation is written as follows: 
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I(i) = 
 N0 

σ0
 , (4) 

 

where σ0 is the area of the particle cross section 
perpendicular to the incidence direction; N0 is  
the number of rays incident on the particle. Note that 
the intensity of each initial ray is assumed to be unity. 
For the differential scattering cross section of a particle 
we have, from Eqs. (3) and (4), the following formula: 

 

σd(θk, ϕl) = lim
R→∞

 R2 
Ikl 

(s)

I(i) ≅ σ0 
Δεkl 

N0 ΔΩkl
 = 

 

= σ0 
Δεkl 

N0 sinθk ΔθΔϕ
 . (5) 

 

Along with the quantity (4) we shall use, in our 
calculations, the following value: 

 

 dσd(θ) 

dθ
 = sinθ ⌡⌠

0

2π

 

 
σd (θ, ϕ)dϕ ≅  

σ0 

N0 Δθ
 ∑
l=1

M

 

 
Δεkl. (6) 

 

The expression in the left-hand side of this equation is 
the symbol designation that is being currently used in 
the scattering theory. 

The scattering cross section of a particle is 

 

σs = ⌡⌠
4π

 

 
σd (θ, ϕ)dΩ ≅  

σ0 

N0
 ∑
k, l=1

M

 

 
Δεkl = σ0. (7) 

 

It is worth noting here that the equality (7)  
does not hold exactly because of the following  
three reasons. The restriction on the number  
of reflections should be mentioned at the first  
place. The second reason for this is that we  
neglect the contribution coming from rays  
whose energy is below a threshold value.  
And finally, the errors of rounding off are  
also to be mentioned among these reasons.  
This problem is solved by normalizing the differential 
cross section calculated to make the equality (7) hold 
true. 

The components of Stokes vector have been 
defined, for each ray, in the following form: 

 

I = E||E||
* + E⊥E⊥

*;    

 

Q = E||E||
* $ E⊥E⊥

*; 

U = E||E⊥
* + E⊥ E||

*;     

V = i(E||E⊥
* $ E⊥E||

*), (8) 

 

where e || and e ⊥ are the parallel and perpendicular, 
with respect to the scattering plane, components  
of the ray electric field. The scattering plane is set by 
the Z axis and direction of the scattered ray 
propagation.  

The Stokes vector-parameter of a wave scattered in 
a given direction is found, using the formula (3), as a 
sum of the Stokes vector-parameter components of the 
rays that are within a solid angle about this direction. 
The  value of the Stokes vector-parameter of scattered 
radiation obtained in this way enables one to calculate 
the scattering phase matrix of a particle, at a fixed 
orientation. The components of the Stokes vector-
parameter of  a scattered radiation  relate to those  of 
the incident one by the linear transformation as 
follows: 

 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

I(s)

Q(s)

U(s)

V(s)

 = 
1
R2 σ(θ, ϕ) 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

I(i)

Q(i)

U(i)

V(i)

 , (9) 

 

where σ(θ, ϕ) is the scattering phase matrix  
that contains 16 elements σij.  To calculate the 
elements of this matrix  one has to consider scattering 
events for the rays that have different states of 
polarization.  

In that particular case it is necessary to get  
four linearly independent values of the Stokes vector-
parameter. This task may be achieved using  
a circularly polarized radiation, as well as  
the radiation polarized linearly along the X axis,  
the Y axis, and at 45 degrees between them.  
Having calculated the Stokes vector-parameters  
of the scattered wave for the four states  
of incident wave polarization we seek the  
elements of the scattering phase matrix from  
a system of linear equations for each line  
of the matrix. The system of equations is as  
follows: 

 

σA = B, (10) 

 

where the components of the matrices A and B defined 
as 
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A = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

I1
(i)

I2
(i)

I3
(i)

I4
(i)

Q1
(i)

Q2
(i)

Q3
(i)

Q4
(i)

U1
(i)

U2
(i)

U3
(i)

U4
(i)

V1
(i)

V2
(i)

V3
(i)

V4
(i)

 ; 

 

B = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

I1
(s)

I2
(s)

I3
(s)

I4
(s)

Q1
(s)

Q2
(s)

Q3
(s)

Q4
(s)

U1
(s)

U2
(s)

U3
(s)

U4
(s)

V1
(s)

V2
(s)

V3
(s)

V4
(s)

 . (11) 

 
The subscripts at the matrix elements denote the 

states of polarization of the incident (superscript i) and 
scattered (superscript s) waves. 

 
THE RESULTS OF CALCULATIONS 

 
To check the validity of calculations with  

this program we calculated the differential cross section 
of light scattering by a sphere. The results of calculating 
the value  defined  by expression  (6)  are  shown  in 
Fig. 3a. For making a comparison we took data 
calculated by Shifrin10 for a sphere in the geometric 
optics approach. The comparison made shows  quite a 
high accuracy of the calculations. In addition, it seems 
to be useful  
to make a comparison with the exact solution  
of the problem of light scattering by a sphere.  
To obtain a Mie solution to that problem we  
used the algorithm proposed in Ref.11. In so doing  
we accepted the following parameters of the problem: 
ka = 104, where a is the radius of the sphere, 
k = 2π/λ, λ is the wavelength of incident radiation. 
The results of a comparison made are presented in 
Fig. 3b. 

To illustrate the scattering properties of 
nonspherical particles we made calculations for three 
models of such particles. 

The first model is an ellipsoid with the ratios 
among its semiaxes being b/a = 1.5 and c/a = 3.   
The refractive index of the particulate matter  
was taken to be n = 1.33. The number of incident  
rays involved was equal to 106, and the  
threshold energy of a ray to 0.0001. The dimensionality 
of the θ and ϕ computation grid  
was 300 by 300 nods. The maximum number  
of reflections was taken 50. The second model  
used is a combination of the above three ellipsoids that 
have the mutually orthogonal orientations.  The third 
 

 

model incorporates the second one and adds nine 
ellipsoids more, with the latter being oriented along 
diagonal directions. 

 

 
 
FIG. 3. The results of calculating the value defined by 
expression (6) for the case of light scattering on a 
sphere as compared to those obtained using a geometric 
optics approach (a) and the Mie theory (b). 
 

The results of calculating the value of the 
differential scattering cross section defined by 
expression (5) are shown in Fig. 4.  The main ellipsoid 
in this figure has a diagonal orientation with respect to 
the Cartesian coordinate system. The results presented 
in this figure show how complicated may the angular 
behavior of the scattering properties be depending on 
the particle shape. It is interesting to note that the 
scattering differential cross section of a particle 
modeled with a combination of 12 ellipsoids exhibits a 
much less pronounced structure as compared to that of 
a three-ellipsoid model. This is explained by the fact 
that the shape of a 12-ellipsoid particle is much closer 
to sphere. Figure 5 presents the calculated elements σ12  
and σ33 for a three-ellipsoid model. 
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FIG. 5. Elements σ12 and σ33 of the scattering phase 

matrix for a three-ellipsoid model, other parameters of 

the problem being the same as in Fig. 4. 

 

 

Thus, in conclusion we may state that the  
program developed enables one to make calculations, in 
the geometric optics approach, of the scattering 
differential cross section and elements of the scattering 
phase matrix of particles of a complicated shape. These 
results may surely be useful in calculations of the 
radiation transfer through crystal clouds. 
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