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The influence of surface deformations of a liquid particle on the Q-factor 

of resonant electromagnetic mode of the droplet is analyzed.  It is 
demonstrated that high-order modes are more susceptible to deformation 
effects as compared with low-order modes.  The pondermotive and 
thermocapillary mechanisms of droplet surface deformations are compared by 
their influence on the energy threshold of stimulated Raman scattering of 
light.  It is established that the amplitude of pondermotive deformations is 
considerably lower than the amplitude of thermocapillary deformations; 
therefore, pondermotive deformations do not significantly influence the energy 
threshold of stimulated Raman scattering (SRS) of light. 

 
INTRODUCTION 

 
Nonlinear optical effects in microparticles of a 

weakly absorbing liquid lead to stimulated Raman 
scattering (SRS), stimulated Mandel’shtam–Brillouin 
scattering, stimulated fluorescence, etc.  In recent 
years, they attract much attention due to prospects of 
using these effects as a physical basis for methods of 
remote laser diagnostics of disperse media.  An 
overview of the main papers on the problem may be 
found in Ref. 1. 

The presence of resonances in the internal 
optical field in transparent micron particles is the 
main cause of the appearance of stimulated scattering 
processes in the particles.  The resonances are high 
Q-factor natural oscillation modes of a dielectric 
sphere.  The modes are similar to the acoustic 
whispering gallery modes in their structure.2  The 
resonances are observed at certain values of the 
dimensionless diffraction parameter of a particle 
x = 2πa0/λ (x >> 1, where a0 is the droplet radius; λ 
is the wavelength of radiation), and their positions 
and resonance characteristics can be determined 
directly from the Mie theory.3 

The spherical surface’s disturbances caused by 
both spontaneous deformations and forced 
displacements of its parts can change resonance 
conditions.  Under natural conditions, the geometric 
shape of a droplet always differs from sphere due to 
thermocapillary deformations of its surface.  The 
deformations are caused by inhomogeneous 
temperature distribution over the droplet’s surface.  
The pondermotive forces arising in a dielectric in the 
presence of the electric field of light wave can be the 
other cause of deformations of the particle’s surface.4 

This paper is devoted to the theoretical study of 
the influence of surface deformations of a spherical 
particle on stimulated scattering, and to a 

comparative estimation for the roles of 
thermocapillary and pondermotive mechanisms of 
droplet deformation. 

 
ESTIMATION OF THE INFLUENCE OF 

DROPLET SURFACE DEFORMATIONS ON THE 
Q-FACTOR OF RESONANCE MODES 

 
The expression for threshold radiation intensity 

of pumping Is leading to the appearance of stimulated 
scattering in spherical microparticles was obtained in 
Ref. 2 and has the form 
 

Is = n= xnl/(gs Qnl a0 Bc),  (1) 
 

where na is the refractive index of the droplet’s 
substance; xnl is the resonance diffraction parameter; gs 
is the coefficient of scattering wave amplification due 
to nonlinear processes; Qnl is the Q-factor of the 
droplet’s resonance mode sustaining the process; Bc is 
the integral coefficient taking into account the spatial 
overlapping of the pumping field and stimulated 
scattering inside the particle.  The indices n, l denote 
the order and the number of the resonance mode, 
respectively. 

As an example, the threshold SRS intensity in 
water droplets is presented in Fig. 1 as a function of 
the diffraction parameter for resonances of high and 
low orders, which can sustain the SRS process with 
equal probability.2 

The influence of deformations of particle’s 
surface will, first of all, have an effect on the Q-
factor of the mode.  The expression for the Q-factor 
of a natural resonance mode of a droplet at the 
frequency ω, as known, can be written in the 
following form: 
 
Q = ωW/P, (2) 
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where W is the electromagnetic field energy stored, 
on the average, in a droplet during the oscillation 
period of a wave.  It is calculated by the expression 
 

W = 
1
8π ⌡⌠

V

 
 (εE2 + H2) dV. 

 
Here H and E are vectors of the electric and 
magnetic field strength inside the particle, ε is the 
dielectric permeability of liquid, and the integral is 
taken over the whole resonance mode volume V 
occupied by radiation. 
 

 
FIG. 1.  SRS threshold as a function of the 
diffraction parameter.  Lines 1 and 2 correspond to 
modes of low and high orders, respectively.  The 
dotted line means the breakdown threshold. 

 

In Eq. (2), P is the value of light wave energy 
losses connected with the energy escape from the 
particle’s volume 
 

P = 
“
4π ⌡⌠

s

   [E × H] nr ds, 

 
where n is the vector normal to the droplet’s surface; 
c is the light speed in vacuum; the integral is taken 
over a closed surface including the particle.  As seen 
from Eq. (2), a decrease in the resonance Q-factor 
can be connected both with a decrease in the stored 
energy and with an increase of the radiation losses. 

Estimates of the additional radiation losses show 
that the effect is insignificant for the case of small 
deformations.  Let us consider the influence of 
deformations of a droplet’s surface on the value of 
the stored energy of a mode.  For this purpose, let us 
apply the qualitative analysis based on geometrical 
optics.  The resonance modes are standing waves 
formed by interference of light waves propagating 
along the surface at angles close to angles of total 
internal reflection off of the boundary between two 
media (in our case, this is a spherical boundary 
between a dielectric and air).  Figure 2 presents the 
behavior of rays forming different resonance modes 
inside the particle.  A standing wave arises when 
light rays propagating along the surface and 
underwent reflection at an angle equal or greater 
than the angle of total internal reflection fall to the 

initial point in the phase multiple of 2π, i.e., the 
condition of phase synchronizm is fulfilled. 

The two cases considered (see Fig. 2) differ by 
the depths at which the rays travel with respect to 
the droplet surface Δr = a0 $ b, where b is the 
position of the boundary of rays’ localization with 
respect to the center of the particle, and by the 
number of reflections necessary to form a standing 
wave.  One can see that, if a ray is localized nearer 
to the particle’s surface, it undergoes more reflections 
off of the surface. 

 
FIG. 2.  Geometric scheme of the resonance modes 
formation.  The rays correspond to two cases  
(solid and dashed lines) differing in the position 
Δr1,2 = a0 $ b1,2 and the number of reflections 
necessary for the total rotation. 

 

Figure 3 presents the distribution of the internal 
particle field for resonance modes of different orders.  
The graph presents the function Bi = I(r)/I0, where 
I(r) is the intensity of light field inside the droplet; 
I0 is the intensity of the incident field.  One can see 
that the electric field of natural modes is 
concentrated near the particle surface.  The energy of 
a given mode n and its concentration near the surface 
of the droplet increase with decreasing order of the 
mode (Fig. 4). 

Let us estimate the influence of the particle 
surface deformations on the Q-factor of resonance 
modes.  Let us express the distance from the center 
of a particle to its surface as r = a0 + ξ(θ, ϕ) where 
ξ(θ, ϕ) are arbitrary deformations of the surface; 
then, in every reflection, a ray passes an additional 
distance Δs which is proportional to the amplitude of 
the deformations.  A deformed particle can be 
replaced by a sphere with a certain efficient radius 
ref = a0 + qξ so that the optical path of a ray in it is 
equal to the path in a deformed particle; q is some 
coefficient, 0 < q < 1.  Then the deformed particle can 
be studied theoretically as a sphere with r = ref. 

It follows from the Mie solution that the stored 
energy of a mode 
 

W ∼ 
⎩
⎨
⎧⏐bn⏐2 $ for ÒÅ waves,
⏐cn⏐2 $ for ÒN waves,

 

 

where cn  and bn  are  amplitudes  of the  partial  
waves 
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FIG. 3.  Field distribution inside the particle over the main section.  The figures at curves denote the 
resonance order.  Pumping radiation is incident from the left. 

 

 
FIG. 4.  The Q-factor (1) and relative position of 
the field maximum inside the particle with respect 
to the particle’s surface (2) as functions of the 
resonance order. 

 
(Mie coefficients).  From the expressions for bn,

3 let 
us write the real part for bn(x) in the form 
 
Re bn(x) = bn

r/[1 + βn(x)2], 
 
where βn(x) = [χn(x) ψ ′n(mx) $ mψn(mx)χ ′n(x)]/ 
/[ψn(x)ψ′n(mx) $ mψn(mx)ψ′n(x)]; χn, ψn are modified 
spherical Riccati–Bessel functions; bn

r are the values 
of the real part of the coefficient bn at the resonance, 
i.e., for x = xnl. 

Let us expand the function βn(x) into the Taylor 
series near the resonance value of the diffraction 
parameter xnl: βn(x) = βn(xnl) + β′n(x) (x $ xnl) + ... ; 
and restrict ourselves only by the linear part of the 
expansion, for the estimation.  Taking into account  
that βn(xnl) = 0, we obtain 

Re bn(x) ≈ bn
r/[1 + β′n(xnl)

2 (x $ xnl)
2]. 

 
Then, considering that the displacement 

amplitude of the droplet’s surface along the normal 
at oscillations by the value qξ = (ref $ a0)/a0 
corresponds to the relative variation of its diffraction 
parameter (x – xnl)/xnl, i.e., drift from resonance, 
and, since βn

′(x) = (Γn)$1 for x = xnl, where Γn is the 
half width of the resonance curve we obtain, using 
the expression for the Q-factor in terms of the half 
width, Qnl = xnl/cn, of the resonance curve that 
 

Re bn(x) ≈ 1/[1 + (q ξ Q 0
nl)

2], 
 
where Q0

nl is the Q-factor of the corresponding mode 
for an ideal sphere.  As a result, for the Q-factor of a 
deformed particle, we have 
 
Qnl(ξ) ≈ Q 0

nl/[1 + (q ξ Q 0
nl)

2]. (3) 
 

It follows from this expression that the Q-factor 
is influenced by a given displacement of the particle’s 
surface stronger for higher Q0

nl.  The estimates 
performed by Eq. (3) for the Q-factor of the resonant 
modes for two values q are presented in the Table. 

 

Q
0
nl Qnl, for q = 1 Qnl, for q = 0.1

10
10
 1.46 ⋅ 10

1
 1.46 ⋅ 10

3
 

10
8
 1.46 ⋅ 10

3
 3.2 ⋅ 10

5
 

10
6
 3.2 ⋅ 10

5
 1 ⋅ 10

6
 

10
4
 1 ⋅ 10

4
 1 ⋅ 10

4
 

 
Thus, one can conclude that low order modes are 

more susceptible to surface deformations as compared 
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with high order modes, and, consequently, there may 
occur such cases for which the resonance conditions 
are violated for the former ones while the latter one 
will still remain capable of sustaining the process of 
stimulated scattering. 

 
COMPARATIVE ANALYSIS OF 

THERMOCAPILLARY AND PONDERMOTIVE 
DEFORMATIONS OF THE DROPLET’S 

SURFACE 
 
As was noted above, thermocapillary and 

pondermotive mechanisms are the main physical 
mechanisms able to cause deformations of a droplet’s 
surface.  The amplitude of the deformations can be a 
criterion for comparing them.  The expression for 
thermocapillary deformations of a droplet is well-
known5 
 

⎜ξ t.c.⎜ = kB Š/4πγ, (4) 
 
where kB is the Boltzmann constant; T is the 
particle’s surface temperature; γ is the surface tension 
coefficient.  As seen from Eq. (4), the amplitude of 
these deformations does not depend on the radius of a 
particle is only determined by the values T and γ. 

Pondermotive forces can cause significant 
deformations of the particle’s surface at high 
intensity of incident radiation what is characteristic 
of the development of stimulating scattering 
effects.6,7 

The general formulation of the problem on 
deformations of a transparent droplet in a  light field 
includes the hydrodynamic equation for 
incompressible liquid with the allowance for 
pondermotive forces.  The theory of the process can 
be found, for instance, in Refs. 4 and 8. 

The dynamic boundary condition 
 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

p $ 
ρa

8π ⎝
⎛

⎠
⎞∂ε

∂ρa
 

2

 E2 $ p1 $ γ ⎝
⎛

⎠
⎞1

R1
 + 

1
R2

  + f  ni = 

 

= η ⎝
⎛

⎠
⎞∂vi

∂xk
 + 

∂vk

∂xi
  nk. 

 
is valid on the droplet’s surface.  Here p is the 
pressure in the liquid; p1 is the external 
(atmospheric) pressure; R1, R2 are the radii of 
principal curvature of the surface; ρa is the density of 
the liquid; η is the kinematic viscosity of the liquid; 

xi are the coordinates; f = 
ε $ 1

8π  ⋅ [(ε $ 1) (Enr)
2 + E2] 

is the jump of the normal component of electric field 
tension on the surface of the droplet. 

Further study is performed under conditions of 
small viscosity and small deformation amplitude.  
One can write the following equation for coefficients 
of the expansion of the surface displacement into a 
series over spherical functions: 

d2 ξnl

dt2
 + 

2
tl
 
d ξnl

dt  + Ω2
l ξnl = 

l fnl(t)

a0 ρa
 ,  (5) 

 

where 
 

tl = 
a20

2(2l + 1) (l $ 1) ν ; Ωl = 
l(l + 2) (l $ 1) γ

ρa a
3
0

 ; 

 

fnl(t) = ⌡⌠
 
    ⌡⌠
 
 f(t, a0) Ynl(θ) sinθ dθ dϕ , 

 

tl is the characteristic time of particle’s oscillations 
decrement due to viscosity; Ωl are the natural 
oscillation frequencies of the droplet; ν is the 
dynamic liquid viscosity. 

The equation (5) completed by the initial 

conditions ξnl(t = 0) = 
dξnl(t = 0)

dt  = 0 was solved 

numerically.  The Runge–Kutta scheme of the fourth 
order was used as a difference scheme. 

Let us now analyze the results obtained.  
Figures 5 and 6 present the temporal behavior of the 
maximum amplitudes of pondermotive deformations of 
water droplets of different radii.  The droplets were 
affected by laser pulses with the wavelength 
λ = 0.532 μm, of 10–8 s duration.  The dependence of 
the exciting force on time was determined by the shape 
of the pumping pulse I(t) = I0 t/tp exp {$ t/tp} where 
I0, tp are the peak intensity and characteristic pulse 
duration, respectively.  For a comparison, root-mean-
square surface displacements due to thermocapillary 
deformations are also presented here.  The shaded area 
means typical time of SRS generation. They are taken 
from experimental works.6,7 
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FIG. 5.  The amplitude of pondermotive (solid 
line) and thermocapillary (dashed line) 
deformations as functions of time.  The shaded area 
means the time of SRS generation. 
 

The choice of the parameters for calculation 
(droplet radius a0, intensity of the acting radiation 
I0) corresponded to two limiting situations at which 
SRS is possible (see Fig. 1). 
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FIG. 6.  The amplitude of pondermotive 
deformations as a function of time for particles of 
two radii.  The straight lines show the amplitude of 
thermocapillary deformations.  The shaded area 
means the time of SRS generation. 

 
As seen from Fig. 5, for large particles 

(a0 = 25 μm), the amplitude of pondermotive 
deformations is much lower than the thermocapillary 
ones, during the time of SRS existence.  So one can 
neglect the influence of pondermotive forces on the 
value of Q-factor and, consequently, on the SRS 
threshold.  One could expect that the deformations 
would influence the SRS generation with the increase 
of pulse duration but the study shows that the rise of 
the velocity of the displacement amplitude decreases.  
Although the maximum amplitude value becomes 
higher, the pondermotive deformations are weaker than 
thermocapillary ones during all the time of the SRS 
generation. 

For small droplets (a0 = 4 μm, see Fig. 6), the 
situation is different.  The amplitude of pondermotive 
surface deformations increases much more rapidly and, 
after certain time, it becomes equal to the amplitude of 
thermocapillary deformations and then exceeds it.  
However, like in the previous case, the influence of 
pondermotive deformations on the SRS threshold is 
insignificant since their amplitude is considerably less 
than the amplitude of thermocapillary deformations at 
the moment of SRS appearance in both cases. 

 

CONCLUSION 
 
Thus, from the results of the work performed, 

one can come to the following conclusions. 
Surface deformations of a droplet lead to a 

disturbance of the internal field structure in the 
particle, i.e., resonance conditions for the natural 
modes of a spherical particle are broken.  High order 
modes are less susceptible to disturbances and they 
remain able to sustain the process of stimulated 
scattering. 

The amplitude of droplet’s surface deformations 
caused by pondermotive forces at the moment of 
stimulated scattering in the entire considered range of 
particles’ size is considerably less than the amplitude 
of thermocapillary deformations.  Therefore, it makes 
no any significant effect on the energy threshold of 
the SRS. 
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