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In this paper we analyze the propagation of polarized and unpolarized light 

through an optically anisotropic medium. In this study we have investigated the 

polarization state and energy losses of the beam passed through such a medium as a 

function of the incident beam polarization, the direction of the beam incidence with 

respect to the axes describing the medium anisotropy as well as of the optical depth 

of the medium along the beam. To achieve this task we have carried out model 

calculations of the extinction matrix elements for anisotropic media of two types . 

The first type assumes the medium to be a layer of cylinder shaped crystals whose 

long axes are randomly oriented in a horizontal plane, while in the medium of the 

second type the long axes of cylinders are additionally grouped about a preferred 

direction in the horizontal plane.  The model calculations made have shown that at 

optical depths that are realistic for actual cirrus clouds the changes in the 

polarization state of the beam passed through such a cloud may surely be neglected.  

At the same time the calculations have revealed a strong dependence of the off-

diagonal elements of the extinction matrix on the incidence angle of the beam for 

both types of anisotropic media and on the azimuth orientation of the plane of 

incidence for the medium of the second type. 
 

1. INTRODUCTION 

 
In natural crystal clouds particles  very often 

take certain orientation. Among  the mechanisms of 
such an orientation there is the action of aerodynamic 
forces when particles fall down under the gravity 
force, of course, the action of other forces is also 
possible. The crystal cloud particles are anisometric, 
that means that they have different dimensions along 
different axes and, correspondingly they have 
different values of polarizability along some axes. The 
orientation of particles according to a certain order 
naturally gives rise to anisotropy of the optical 
properties of the ensemble of such particles as a 
whole. The anisotropy of optical properties of the 
ensemble manifests itself in certain peculiarities of 
light scattering by such an ensemble. These 
peculiarities are often observed for sun light 
propagated through such media in the form of sun 
pillars, halo, mock sun, and other optical phenomena. 
Explanations of these phenomena have been given in 
many publications a review of which may be found in 
Ref. 1. In recent years there is observed an increased 
interest in studies of light scattering by individual 
crystal particles and ensembles of such particles as 
well.2$4 

 

The primary goal of this paper is to try to 
understand the transformations of the initial, not 
scattered, radiation that may occur during its 
propagation through the anisotropic media. The matter 
is that the energy losses of a beam propagated through 
an anisotropic medium should depend on the direction 
of the beam incidence on the medium, with respect to 
the axes characteristic of the medium anisotropy, and, 
in the general case on the polarization state of the 
incident beam. Moreover, the polarization state of the 
beam propagated through the medium may depend on 
the optical depth of the propagation path within the 
medium. Below, after a brief overview of the 
theoretical results concerning this problem, we shall 
estimate their importance for light scattering in crystal 
clouds by calculating the extinction matrices for the 
ensembles of ice cylinders.  

 

2. EXTINCTION MATRIX AND  

THE GENERALIZED BOUGER LAW 
 

The components, E1 and E2, of the electric field of 
an electromagnetic wave propagated through a layer dz 
of a scattering medium are related to the corresponding 

quantities E0
1 and E0

2 of the wave incident onto the 

medium layer by the following expression5 

 



932   Atmos. Oceanic Opt.  /December  1997/  Vol. 10,  No. 12 B.V. Kaul’ and D.N. Romashov 
 

E

E
Nk z

A A

A A

E

E

1

2

2 11 12

21 22

1
0

2
0

2
0 0

0 0

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟−

I π d

~
( )

~
( )

~
( )

~
( )

,  (1) 

 
where I is the unit matrix of 2 by 2 dimension; N is the 
number of particles in a unit volume; k is the wave 
number of radiation that propagates along the z 
direction (the direction e3, such that, and e1 × e2 = e3, 

k = ke3); 
~

( )Aij 0 ) are the elements of  matrix of the 

forward scattering amplitudes averaged over the 
particles ensemble. According to Ref. 5 this equation 
well describes such optical phenomena as birefringence, 
rotation of the polarization plane, linear and circular 
dichroism. 

It may be shown that if we describe the 
electromagnetic field in terms of the Stokes vector the  
 

relationship similar to the Eq. (1) takes the following 
form 

 
S(0) = (I $ ε(z) dz)S0 ,  (2) 

 
where S(0), S0 are the Stokes vectors of the radiation 
passed through the layer dz and of the incident 
radiation, respectively; I is the unit matrix of 4 by 4 
dimension; ε(z) is the extinction matrix of the 
medium. 

If the Stokes parameters are defined as  
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then the extinction matrix takes the following form6 
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Here the values 
~

Aij  are, as in the above formulas, the 

amplitudes of the forward light scattering averaged 

over the particle ensemble. These complex values 
~

Aij  

are the functions of the particulate matter refractive 
index, particle shape, and particle orientation. In many 
practical cases, when no anisotropy takes place in the 
refractive index and particles are randomly oriented, 
the operation of averaging over the particle ensemble 
reduces the extinction matrix to the product of a scalar 
value (the extinction coefficient) by the unit matrix. 
However, if there is a macroscopic anisotropy of a 
medium, for instance orientation of anisometric 
particles along some preferred direction, the elements of 
the extinction matrix should necessarily depend on the 
direction along which the incident radiation propagates 
through the medium. The transformations, that 
radiation experiences in an elementary volume, are 
described by Eq. (2), while the propagation of 
radiation  through the medium is described by the 
radiation transfer equation6,7 

 

(k∇)Si(r, Ω) = $∑
j=1

4
 
 αij Sj(r, Ω) +  

 

+ ∑
j=1

4
 
 ⌡⌠
4π

 
 dΩ′ Dij(Ω, Ω′) Sj(r, Ω′) , (5) 

 

where Si(r, Ω) is the Stokes parameter of radiation at 
the point r; the radiation with the wave number k 
propagates along the direction Ω; k∇ is the operator 
that has the meaning of the derivative along the 
direction k; αij are the elements of the matrix α = kε; 
Dij(Ω, Ω′) are the elements of the scattering phase  
 

matrix that may easily be expressed in terms of the 
scattering amplitudes Aij(Ω,Ω′) for the scattering 
process from the direction Ω′ to Ω. If the task to be 
achieved is the estimation of only coherent component 
of the radiation propagated through a medium within a 
small solid angle dΩ, for instance, to identify the 
transformations of a laser radiation at its propagation in 
an anisotropic medium, then one surely may neglect the 
second term in equation (5). Note, that  in that case 
only incoherent fraction of multiply scattered radiation 
is omitted. As to the forward scattered light it is 
coherent and it is just the interference of the direct and 
forward scattered wave that determines the 
transformations of the incident radiation summed up in 
the transmitted wave. Let the radiation be propagating 

along the z direction. By assuming that k∇ = k 
d
dz

 , 

S(z = 0) = S0 and omitting the second term in Eq. (5) 
we may write the latter in the following form 
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z z= − ε .  (6) 

 

This equation is a vector-matrix form of a system 
of ordinary differential equations of the first order for 
functions I(z), Q(z), U(z), and V(z). A solution to 
this system may be sought as an iteration series8  
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One can easily see that series (7) coincides, at ε 
independent of z, with the definition of exponential 
function whose argument is a matrix 

 

exp( )
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−
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n

n
n

0

,  (8) 

 

where A is, in this particular case, the matrix  
A = (z $ z0)ε. 

Taking this comment into account a solution to the 
above equation may be written in the following form: 

 
S(z) = exp {$ε(z $ z0)}S0 .  (9) 
 

Formula (9), in its form, coincides with the 
Bouger law and thus it may be considered as a 
generalization of the latter to the case of light 
propagation through a homogeneous anisotropic 
medium. In the case of an isotropic medium the 
extinction matrix reduces to the product of a unit 
matrix by a scalar value, and the equation (9) takes the 
form of usual Bouger law written for each of the Stokes 
parameters. 

In an optically thin anisotropic medium, that is 
when the condition  

 
εii(z $ z0) << 1 ,  (10) 

 
holds one may take only the first term in the expansion 
(8) and write the equation for Stokes vector as follows: 

 

[ ]S I S0( ) ( )z z z= − − 0 ε .  (11) 

 
Equation (11) coincides, in its form, with the 

equation (2) that describes transformations of radiation 
in an elementary volume. In the general case of a 
homogeneous medium it is advisable to use the 
expansion of the exponent (9) over its argument 
powers, while in the case of an inhomogeneous medium 
one should calculate the iteration integral (7).  

 
3. NUMERICAL  ESTIMATIONS FOR DIFFERENT 

MODEL MEDIA 

 
In order to estimate the effect of cloud particle 

orientation on the extinction of incident radiation, as 
well as on the polarization state of radiation propagated 
through the cloud we have calculated extinction 
matrices for the ensembles of round ice cylinders. We 
have performed the calculations using lognormal type 
of particle size-distribution function at three values of 
modal radii of the distribution (rm = 1; 10; and 
125 μm). In all the three cases the distribution 
parameter σ was taken to be 0.15, the cylinder length 
was l = 4a, where a is the cylinder radius. The incident 
radiation was taken to have the wavelength 
λ = 0.53 μm and the complex refractive index of ice 
was taken to be m = 1.3 $ i2.5⋅10$9. Birefringence of 
the ice was not taken into account in these calculations. 

In this study we have considered two types of  
particle orientation. In the one the long axes of 
cylinders were taken to be randomly oriented in a 
horizontal plane, other parameters used in calculations 
being as mentioned above. In the second case the axes 
were taken to be grouped about some preferred 
direction in a horizontal plane. The parameters used in 
calculations in the latter case are as follows. The modal 
radius of cylinders am = 1 μm, σ = 0.5, l = 9a, 
λ = 1.06 μm, and m = 1.299 $ i2⋅10$4. The method of 
calculating the  amplitudes of light scattering by an 
individual particle and their averaging over an 
ensemble may be found in our earlier publications, see 
for instance, Ref. 9. The number concentration, N, of 
particles was taken to be 103 per liter, in all the cases 
considered. As an example, Figs. 1 and 2 show the 
extinction matrix elements calculated for ensembles of 
particles randomly oriented in a horizontal plane. The 
polar angles γ and ϕ, describe the position of the 
normal to the plane that involves, in the coordinate 
system e1 × e2 = e3 = k/k, where the long axes of 
cylinders lay. In other words these angles determine the 
position of the ensemble symmetry axis with respect to 
the polarization basis in which the Stokes parameters of 
the incident and passed radiation are being determined. 

The monotonic fall off of the element ε11 that may 
be seen in Fig. 1b with the increasing incidence angle γ 
has quite a simple physical meaning. The element ε11 as 
the meaning of the extinction coefficient of the medium 
for unpolarized light. Light extinction on nonabsorbing 
particles occurs due to scattering. If particles are large 
a significant contribution appears from the diffraction 
part of the scattering phase function. This contribution 
is determined by the area of the particle cross section 
onto the plane perpendicular to the direction of 
incident light propagation. The area of this projection 
decreases with increasing angle of incidence thus 
resulting in the fall off of the extinction coefficient of 
such a medium.  In the case of smaller particles the 
diffraction plays a less significant role in the light 
scattering process, and there may occur resonance in the 
dependence of ε11 on γ. One can see this situation with 
resonance in Fig. 1a in the vicinity of the angle 
γ = 45°. No dependence on the angle ϕ  is observed 
because the natural light is unpolarized. 

The lengths of the long cylinder axis projection 
onto the plane perpendicular to the light wave vector 
are different for cylinders that are parallel to the 
incidence plane and perpendicular to it. As a result, the 
projections of cylinder long axes form an ellipse 
compressed along the symmetry axis of the particle 
ensemble. This, in its turn, makes different conditions 
for propagation of light beams polarized in the 
incidence plane and perpendicular to it. From the 
standpoint of the description in terms of the extinction 
matrix there appears a dependence of the propagation 
conditions on how is the polarization basis, in which 
the Stokes parameters are determined, oriented with 
respect to this ellipse. In the particular case we 
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consider here this will result in a dependence of  the 
off-diagonal elements of the extinction matrix on the 
angle ϕ. 
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FIG. 1. Dependence of the extinction matrix element, 
ε11 (km$1), of the ensemble of ice cylinders randomly 
oriented in a horizontal plane on the polar, γ, and 
azimuth, ϕ, angles of the position of symmetry axis of 
the ensemble with respect to the polarization basis 
where the Stokes vectors of incident and passed 
radiation are determined. Calculations were made for 
ensembles with the modal radius rm of 1 μm (a); 
10 μm (b); and 125 μm (c). 

Figure 2 shows the element ε12 calculated for these 
same ensembles as in the case presented in Fig. 1. Other 
elements of the matrix have also been calculated in our 
study, but their graphical presentation in  this same form 
would take a lot of place while hardly adding much new 
information. For that reason we shall present below the 
view of an extinction matrix in one, specially chosen, 
coordinate system and show using it some properties that 
do not depend on the choice of a coordinate system. 
 

0
15

30
45

60
75

90 0

30

60
90
120
150
180-0.0002

-0.0001

0.0000

0.0001

0.0002

ε
12

ϕ

γ

 

= 

0
15

30
45

60
75

90 0

30

60
90
120
150
180-0.0002

-0.0001

0.0000

0.0001

0.0002

ε
12

ϕ

γ

 

b 

0
15

30
45

60
75

90 0

30

60
90
120
150
180

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

ε
12

ϕ

γ

 

c 

FIG. 2. Dependence of the extinction matrix element, 
ε12 (km$1), analogous to those in Fig. 1 and for these 
same ensembles as in Figure 1.  
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Let us define the polarization basis so that the 
vector e1 be in the incidence plane. That corresponds to 
the case of ϕ = 0. From Figure 2 one may see that the 
section by the plane ϕ = 0 enables obtaining the view 
of the dependence ε12 (γ, ϕ = 0) from which it is seen 
that at small γ values this element has the magnitude 
close to zero while taking negative values at increasing 
γ. Let us write this tendency using the following 
expression ε12 = $|ε12|. If we assume this rule to be 
valid for other elements of the matrix, we may write 
the view of the extinction matrix for ensembles with all 
the three size-distribution functions used in calculations 

 

ε = ε

− ε

− ε

ε

− ε

11

12

12

34

34

1 0 0
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0 0 1

0 0 1
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, (12) 

 

where ε$ij = εij/ε11, ε11 > 0. 
Let us now determine, by substituting this matrix 

into Eq. (11), the polarization state of radiation that 
has propagated through the path z $ z0 in the layer, 
the polarization state of light incident on the layer 
being described by the Stokes vector S0. 

Let the incident beam be unpolarized, that is  
 

S0 0 1 0 0 0= I ( , , , )Τ ,  (13) 
 

where the superscript T denotes the operation of 
transposition. 

By substituting Eqs. (12) and (13) into the 
expression (11) we obtain 

 

[ ]I z z z I

Q z z z I U V

( ) ( )

( ) ( ) , .

= − −

= − = =

1

0

0 0

0 0

ε

ε

11

11 12ε

  (14) 

 

Since Q(z) > 0, the result obtained means that the 
radiation propagated through the z $ z0 layer takes 
partial polarization with the polarization plane being 
the plane of incidence. 

If the radiation incident on the layer is linearly 
polarized with the polarization plane being the plane of 
incidence, we have 

 

S0 0 1 1 0 0= I ( , , , )T . 
 

By substituting this expression into the Eq. (11) we 
obtain  

 

[ ]

[ ]

I z z z I

Q z z z I U V

( ) ( ) ( )

( ) ( ) ( ) , .

= − − −

= − − − = =

1 1

1 1 0
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0 0

ε ε

ε

11 12

11 12ε

  (15) 

 

From this one can see that the second normalized 
Stokes parameter Q(z)/I(z) = 1 did not change. That, 
in its turn, means that the radiation propagated  
through the layer z $ z0 has the same polarization as 
the incident one. 
 

By comparing the values I(z) in expressions (14) 
and (15) one may readily come to a conclusion that 
linearly polarized light with the polarization plane 
being the plane of incidence undergoes weaker 
attenuation in such a medium as compared to the 
attenuation experienced by natural (unpolarized) light. 
One may show, in a similar way, that linearly polarized 
light with the polarization plane being perpendicular to 
the plane of incidence undergoes stronger extinction as 
compared to that experienced by natural light, while 
the radiation passed through the layer z $ z0 has the 
same polarization state as the incident beam. In the 
cases when incident light is polarized linearly at ±45° 
angles with respect to the incidence plane the radiation 
propagated through the layer takes the clockwise and 
counterclockwise ellipticity in its polarization state. If 
the incident light is circularly polarized the propagated 
radiation is elliptically polarized. 

The absolute values of the off-diagonal elements of 
the extinction matrix make only small fractions of per 
cent from the values of the diagonal elements of this 
matrix and only in an extreme case of the exact 
orientation of cylinders that have size in the resonance 
region (rm ≈ λ) their values can reach approximately 
10%  of the diagonal elements’ magnitude. Certain 
ideas on how the degree of the polarization state 
transformation due to propagation through the 
anisotropic media depends on the optical depth τ of the 
media may by gotten from the curves depicted in 
Fig. 3. This figure illustrates the dependence on τ of 
the parameter Q or the degree of polarization, what is 
the same in this case, that appears in the radiation 
propagated through the layer of cylinder particles 
having two orientations when natural light is incident 
on it at a slant angle. As one can see from this figure, 
the degree of polarization could reach only few per cent 
at the optical depth characteristic of real cirrus clouds 
even in the extreme case when all particles of the 
ensemble are oriented exactly along a preferred 
direction. Furthermore, if we take into account the 
facts that only partial orientation of particles normally 
occurs in cirrus clouds and the particle size far exceeds 
the wavelength (see Fig. 2c) then we may surely 
neglect the transformations of the polarization state of 
the radiation propagated through the layer. However, 
this conclusion may be revised if calculations are made 
that allow for the birefringence of ice, which is quite 
significant. The account for this factor is  yet to be 
done while from the results already obtained and 
discussed in this paper it follows that the anisotropy of 
a scattering medium due to particle orientation only 
manifests itself in a strong dependence of the extinction 
matrix diagonal elements on the incidence angle γ for 
the ensembles of the first kind and, in addition, on the 
angle between the direction of preferred particle 
orientation and the incidence plane, as is seen from 
Fig. 4.  
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FIG. 3. The degree of linear polarization that appears 
in natural light propagated through a layer of cylinder 
particles, when incident at a slant angle, as a function 
of the layer optical depth τ in the case when cylinders 
are randomly oriented in a horizontal plane (curve 1) 
and oriented exactly along the direction that lays in 
the incidence plane and this horizontal plane 
simultaneously (curve 2).  
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FIG. 4. Dependence of the extinction matrix element, 
ε11 (km$1), of the ensemble of ice cylinders oriented 
along a preferred direction in a horizontal plane on the 
incidence angle γ and angle α, in the horizontal plane, 
between the direction of preferred orientation of the 
particle axes and the plane of incidence.  

 
In the latter case and if the cylinder axes are 

oriented along a preferred direction that lies in the  
 

incidence plane the extinction coefficient may vary 
within an order of magnitude at the variation of the 
incidence angle from 0 to 90 degrees. This is primarily 
caused by particle orientation and elongated shape of 
columns. These factors may manifest themselves, for 
instance, in the dependence of the extinction coefficient 
of such a medium for solar radiation on the azimuth 
and elevation angles of the Sun. This may happen 
already at the degree of particle orientation that have 
been found experimentally.10  Thus we may state that 
the account for angular behavior of the extinction 
coefficient should make the calculations of the 
transmitted and scattered radiation, as well as of 
conditions for laser radiation propagation through 
crystal clouds more accurate. 
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