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The discrete one-point distribution functions for concentration of aerosol 

particles in the atmosphere are proposed on the basis of natural physical 

assumptions.  In particular, the binomial law and Poisson distribution are 

grounded.  They are compared with the continuous analog of the distribution 

function from our previous results.  Examples of practical use of the obtained 

results are considered.  Applicability limits of the approach proposed are discussed. 

 

As a rule traditional methods of studying aerosol 
transfer in the atmosphere enable one to obtain only 
mathematical expectations of the admixture 
concentrations.  Since the aerosol dispersal occurs in 
a turbulent medium, these data are not sufficient for 
solving some practical problems.  In the general case, 
it is necessary to know the concentration distribution 
functions, namely, the statistical description of the 
propagation process.  The following relation for the 
concentration distribution function F(C) of aerosol 
contaminations, at a given point with the coordinates 
x, y, z and at the moment t in time, is proposed in 
Ref. 1: 
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where C is the number concentration of particles; 
$
C 

is the mathematical expectation of the concentration; 
α is the second parameter of the distribution law; erf 
denotes the probability integral.2 

The expression (1) is the exact solution to the 
Kolmogorov equation.3 It was obtained under the 
assumption that the variation of concentration is a 
stochastic Markovian process.  The function (1) 
agrees with the results of laboratory experiments 
performed in a  wind tunnel as well as with 
independent data of several field experiments.1 

Note that Eq. (1) describes the continuous 
spectrum of concentration values.  However, it may 
happen, during the aerosol dispersal, so that at some 
moment in time at a given point the number of 
particles k in a unit volume around this point may 
occur to be very low so that Eq. (1) is inapplicable.  
In this case, one should turn to methods of statistical 
description with a discrete spectrum of values of 
particles’ number in a unit volume. 

The aim of this paper is to justify discrete 
analogs of the continuous distribution function (1) on 

the basis of natural physical assumptions, and to 
analyze them. 

Because a linear relation between k and C, the 
function F(C) can be transformed to the distribution 
function Fv(k) for k particles in a certain volume V.  
To do that, one should perform substitutions k = CV 
and  

k
$
 = C

$
V in Eq. (1) (the upper bar means averaging).  

Then the second parameter of the distribution law for 
the number of particles is β = Vα. 

The distribution functions F(C) and Fv(k) 
depend on two parameters. So, it is necessary and 
sufficient to give two concentration moments in order 
to apply them in practice.  For instance, 
mathematical expectation of concentration can be 
obtained by solving a semi-empirical equation of 
turbulent diffusion,4 and the second parameter α is 
obviously connected with the concentration variance 

σC

2  which can be obtained by solving a similar 
equation, see Ref. 5. 

Thus, with the allowance for the above-stated 
remarks, the distribution Fv(k) (in fact, continuous) 
can be used to approximate a discrete distribution 
law for particles’ number, if one uses integer k. 

Let us consider the limiting case when only one 
particle is travelling.  Let W0 be the probability of 
the particle being inside a given volume V at a 
moment t.  Then the probability of being outside the 
volume is  
1 $ W0 (there are no particles in the volume V).  If 
a source emits n similar particles travelling 
independently, the probability of observing k ≤ n 
particles in the volume is, obviously2 

 

p(k) = C
n

k W 

k

0 (1 $ W0)
n$k,  k = 0, 1, 2, ..., n, (2) 

 

where Ck

n are the binomial coefficients.2  The discrete 
distribution function P(k) corresponding to the 
probabilities (2) has the form 
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This is the binomial distribution.2 It is a two-
parameter function with the mathematical expectation 

k
$
 = nW0 and variance σk

2
 = nW0 (1 $ W0).2 

If the initial value of the concentration 
expectation is given as delta function at the point of 
the source’s action, then, according to Ref. 4, the 

field C
$

0 obtained can be treated as the probability 
density of a single particle being at a given point at a 
moment t.  Then 
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where Ω is the domain where the admixture is 

dispersed; C
$

 is the concentration field from an 
arbitrary source. 

Let the number n of particles emitted by the 
source tend to infinity.  Then, if W0 tends to zero (in 
fact, beginning from W0 < 0.1) and the product nW0 
is finite, the binomial distribution (3) can be 
approximated by the Poisson distribution2 
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For this distribution, mathematical expectation of the 

number of particles is equal to the variance k
$
 = σk

2 
(see Ref. 2).  This distribution, in contrast to the 
above-mentioned ones, is a single-parameter function. 

Now let us compare the approximating function 
Fv(k) with the distributions (3) and (4) under the 
assumption that they have similar mathematical 
expectations and variances.  After calculations, we 
obtain 
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On the other hand, according to properties of the 
binomial and Poisson distributions, we have 
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Thus, specifying the mathematical expectation of 
the number of particles in a certain volume and, if 
necessary, the total number of the emitted particles, 
one can obtain the parameter β by solving Eq. (5) 
with the allowance for Eq. (6).  Note that this 
procedure is valid only if concentration variation is 
rather weak within the chosen volume V.  Under this 
condition, the probability W0 is approximately equal 

to the product of C
$

0 by V.  Thus, the estimation of 
W0 is based on a single-point characteristic for which 
the relation (5) is valid. 

The dependence (5), with the allowance for the 
relation between the mathematical expectation and 
variance for the Poisson law demonstrates that the 
limiting value of the parameter β equals 0.89 when 
the average number of particles k in a certain volume 
tends to zero.  In the other case, when the number of 

particles grows, β asymptotically tends to (2k
$
)1/2.  

The calculation demonstrate that the dependence of β 
on k obtained by the relation (5) and the asymptotic 
behavior coincide already at k > 3.  The view of the 

dependence of β on k
$
 may be gotten from the data 

presented in Table I. 
 

TABLE I.  The dependence of the parameter β on 
the average number of particles k under the 
condition that the mean values and variances of the 
discrete and continuous distributions are equal. 
 

k
$
 β k

$
 β 

10000.0 141.2 1.30 1.73 
1000.0 22.4 1.00 1.56 
100.0 14.1 0.69 1.39 
10.0 4.5 0.28 1.11 
8.0 4.0 0.10 0.97 
6.2 3.5 0.01 0.90 
4.5 3.0 0.001 0.89 
3.2 2.6 0.0001 0.89 
2.1 2.1 0.00001 0.89 

 

The results of comparing Fv(k) with the Poisson 

distribution are presented in Table II.  For k
$
 = 10 

(β = 4.5), the continuous distribution quite satisfactorily 
approximates the Poisson distribution.  With the decrease 

of k
$
, for k

$
 = 1.0 (β = 1.6) we see a significant, reaching 

0.2 for k
$
 = 1, differences between the discrete and 

continuous distributions.  With the further decrease of 

the average number of particles, e.g. the case of k
$
 = 0.1 

(β = 0.97), a good coincidence is observed again.  As a 
matter of fact this case is close to the limiting one and is 
not of practical interest because the density of the 
continuous distribution degenerates into the delta 
function and the discrete distribution tends to a 
degenerate distribution.2 
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TABLE II.  Comparison of the Poisson distribution 
P(k) with its continuous approximation Fv(k) for some 

values of the average number of particles k
$
 in a 

volume V. 
 

k Fv(k) P(k) k Fv(k) P(k) 

k
$
 = 10;  β = 4.48 k

$
 = 1;  β = 1.57 

0 0.002 < 10$4 0 0.368 0.368 
1 0.003 0.001 1 0.536 0.736 
2 0.006 0.003 2 0.820 0.920 
5 0.057 0.067 3 0.965 0.981 
6 0.104 0.130 4 0.996 0.996 
7 0.172 0.220 5 0.9997 0.9994
8 
9 

0.264 
0.376 

0.330 
0.458 

k
$
 = 0.1;  β = 0.97 

10 0.500 0.583    
12 0.736 0.792 0 0.884 0.904 
15 0.943 0.951 1 0.959 0.995 
16 0.971 0.973 2 0.998 0.999 
20 0.999 0.998    

 

Let us also note a satisfactory coincidence of the 
probability to observe zero number of particles in a 
volume.  It describes the concentration intermittence 
effect.1 

Now let us turn to the criterion enabling one to 
establish the moment for œswitchingB from the 
continuous statistics to its discrete analog.  The nature 
of continuous and discrete distribution laws is 
fundamentally different, and we cannot pass smoothly 
from one distribution type to another one.  At the same 
time, there is a possibility to assess when the discrete 
law can be used instead of the continuous one for 
dispersal of aerosol admixtures in the atmosphere.  It is 
clear that the average number of particles in a volume 
V must tend to zero. 

If k
$
 tends to zero in Eq. (5), the variance of 

particles’ number in a given volume also tends to zero 
so that 
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This relation shows the order of the value for the 
parameter β so that the variance of the number of 
particles would be equal to their mathematical 
expectation when the average number of the particles in 
a volume tends to zero, in correspondence with the 
Poisson distribution law.  This takes place if and only 
if the value enclosed in round brackets in Eq. (7) is 
close to unity in its magnitude.  The data from Table I 

demonstrate that the magnitude of k
$
 must be less than 

a few tenths.  In correspondence with the relation 
β = Vα, we can also obtain the connection between α 
and V. 

Let us consider the dispersal process for a 
monodisperse aerosol in the boundary layer of the 

atmosphere.  Let the aerosol be emitted by a stationary 
point source of power 105 g/s at the height 100 m, 
with the diameter of particles being 2⋅10$5 m.  To 
calculate the field of wind velocity, we used a 
numerical-analytical model.6  The coefficients of 
turbulent diffusion were determined based on the 
hypothesis that they are proportional to the 
corresponding components of the Reynolds viscous 
stress tensor.5  They and some accompanying 
parameters were specified using an algebraic model.5,7 

 

TABLE III.  Calculated values of the parameters of 
the continuous and discrete distributions. 
 

m S
$
, g/m3 C

$
, 

pieces/m3 
k
$
 β, 

pieces/m3

α$1, “m3

1 0.58⋅10$15 0.14⋅10$6 0.26⋅10$5 0.22⋅10$9 0.19⋅108

2 0.54⋅10$13 0.13⋅10$4 0.11⋅10$3 0.47⋅10$9 0.89⋅107

3 0.40⋅10$11 0.95⋅10$3 0.46⋅10$2 0.87⋅10$9 0.48⋅107

4 0.23⋅10$9 0.55⋅10$1 0.11⋅100 0.21⋅10$8 0.20⋅107

5 0.10⋅10$7 0.23⋅101 0.70⋅100 0.15⋅10$7 0.28⋅106

6 0.33⋅10$6 0.79⋅102 0.13⋅101 0.27⋅10$6 0.15⋅105

7 0.97⋅10$5 0.23⋅104 0.15⋅101 0.64⋅10$5 0.65⋅103

8 0.23⋅10$3 0.55⋅105 0.16⋅101 0.14⋅10$3 0.29⋅102

9 0.72⋅10$2 0.17⋅107 0.92⋅101 0.78⋅10$3 0.54⋅101

 

Some results of the calculation are presented in 
Table III where m is the number of the point on a line 
perpendicular to the wind direction at the distance 
14 km from the source.  The distance between the 
points is 2 km.  The point with m = 9 is on the 
symmetry axis of the aerosol plume, and the point with 

m = 1 is at its periphery.  In the table, 
$
S and 

$
C are 

mathematical expectations of the aerosol concentration.  
These are calculated using a model at the height of 2 m 
from the underlying surface and expressed in g/m3 and 

in m$3, respectively; k
$
 is the mathematical expectation 

of the concentration in the case of Poisson distribution; 
β is the second parameter of the continuous distribution 
function of concentration. 

Note that mathematical expectation and variance 
in the Poisson distribution are dimensionless.  
However, when describing a physical process, we mean 
that the values are referred to a certain unit volume. 

Let V0 be a unit volume such that mathematical 
expectations for concentration of the discrete and 
continuous distribution functions coincide in it.  The 
value V0 calculated in this way turned to be similar to 
the parameter α$1 which can be interpreted as a unit 
volume for the Poisson distribution.  The corresponding 

k
$
 and α$1 are underlined in the table.  These values 

indicate the spatial boundary where the conditions k
$

 ≤ 1 and V ≤ α$1 are violated and one should pass from 
the continuous concentration distribution to its discrete 

analog.  Since k
$
 does not depend on the source power 

and β depends on it linearly, α$1 is inversely 
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proportional to it.  Therefore, the boundary indicated 
in the sixth column of the table will be displaced into 
the domain of small concentration values when the 
source power increases. 
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