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Methods of the influence functions (IFs) and the spatial-frequency 
characteristics (SFCs) are used to solve the vector boundary-value problem of the 
theory of polarized radiation transfer in a three-dimensional plane layer.  
Generalized solution is first obtained for the calculation of the parameter of the 
Stokes vector with the help of the vector IFs (VIFs) or the vector SFCs (VSFCs).  
The vector optical transfer operators (VOTOs) are constructed whose kernels are 
tensors of IFs (TIFs) or SFCs (TSFCs).  Basic models for calculation of VIFs and 
VSFCs are described. 

 

INTRODUCTION 
 

On the basis of the scalar kinetic equations of the 
radiative transfer theory, basic models of the influence 
functions (IFs), spatial-frequency characteristics 
(SFCs), and optical transfer operator (OTO) of the 
system atmosphere $ underlying surface have been 
formulated in our works1$3 by rigorous methods of the 
perturbation theory and the theory of fundamental 
solutions and theoretical calculational investigations 
into the propagation of the optical and millimeter 
(MM) waves4$7 with the consideration of the 
polarization and depolarization mechanisms in the 
scattering, absorbing, and radiating Earth's atmosphere, 
including hydrometeors (cloudiness, rain, fog, and so 
on) with various sources of insulation and reflecting 
boundary characteristics, the vector optical transfer 
operator8 (VOTO) is constructed in the present paper.  
Particular cases of the VOTO were considered in our 
previous papers.1,9,10 

In the last few years, investigations of the MM wave 
range (MMWR) for which the quasioptical 
approximation8 is true, have been busted.  The term 
œmillimeter wavesB is the contemporary of radio.  
MMWR came into use only some years after Hertz 
carried out a series of experiments (1886$1888) and 
discovered radio waves.  Hertz established the wave 
nature of propagation of the electromagnetic energy, 
thereby confirming the Maxwell theoretical conclusions.  
He proved that radio wave reflection and refraction laws 
are true and studied their polarization nature. 

Because of increasing demands for communication 
channels, the working frequencies of ground-based and 
satellite systems constantly increase and communication 
technique is complicated due to the use of digital 
devices and orthogonally polarized channels.  This 
progress calls for the development of our knowledge 
about interaction between hydrometeors and radiation; 
in so doing, the knowledge should be more detailed for 
extinction calculation.  On the basis of information 

about scattering and absorbing properties and 
emissivity of hydrometeors, it is necessary to 
investigate various effects of multiple and incoherent 
scattering on the polarized and cross-polarized 
components, effects of scattering on noise and 
transfer characteristics of channels, and so on.  
Polarization properties of signals in combination with 
multifrequency measurements are used in the method 
of radar meteorology to measure the intensity of 
precipitation and to investigate the phase state, 
shape, size distribution, and motion of precipitation 
particles in clouds.  The main purpose of the review 
done in Ref. 6 is theoretical analysis of the problem.  
Background radio wave radiation and, according to 
the Kirchhoff law, absorption of the atmosphere 
interfer with the reception of signals transmitted 
through the atmosphere at frequencies above 10 GHz.  
To consider the effect of the troposphere on the 
MMW propagation and to develop methods of 
compensation for background radiation it is necessary 
to investigate spectral polarization and spatial-
angular characteristics of the atmospheric radio wave 
radiation. 

Study of properties of the underlying surface4 is 
urgent for the design of radio engineering 
communication systems, detection and ranging, and 
remote sensing.  In the process of propagation of MMW 
above the snow, ice, or plant cover, sandy or water 
surface, asphalt or concrete cover, and so on the field 
fluctuations and interferences are introduced. 

Electromagnetic fields (EMFs) and vital activity 
of organisms are interrelated.7 The development of 
human civilization, due to advances in electronics and 
radio engineering, creates significant additional 
electromagnetic background radiation of anthropogenic 
origin in which all organisms of the Earth should live. 
Considerable recent attention has been focused on 
biophysical effects of low-intensity MMWs between 30 
and 300 GHz corresponding to the wavelengths in air 
between 10 and 1 mm. 
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Natural MMW sources with significant intensities 
are absent.  Artificial sources appeared only ~40 years 
ago.  "Millimeter" problem is only a part of the global 
problem on the impact of weak and ultraweak EMFs on 
living organisms.  Strong interactions, by essence, are 
the energetic impacts and any biological effects are 
produced exclusively by heating of an object, that is, 
they are thermal.  Hypotheses are set up that weak 
impacts may affect not only the regulating functions of 
an organism, but also its biological protection systems. 

 
PROBLEM FORMULATION 

 
A problem of transfer of optical or millimeter 

radiation with wavelength λ through a plane layer 
infinite in horizontal direction ($∞ < x, y < ∞) and 
having finite height (0 ≤ z ≤ H) is considered in three-
dimensional Euclidean space; radius-vector r = (x, y, z) 
has the projection r⊥ = (x, y) onto the horizontal plane.  
The system atmosphere $ underlying surface at the 
level z = H is considered nonmultiplicative (without 
multiplication).  A set of all directions s = (μ, ϕ), 
where μ = cosΘ ∈ [$1, 1], Θ ∈ [0, π] is the zenith angle 
measured from the internal normal to the upper 
boundary of the layer z = 0, which coincides with the z 
axis, and ϕ ∈ [0, 2π] is the azimuth angle measured 
from the positive direction of the x axis, forms the unit 
sphere Ω = Ω+ ∪ Ω$.  Here, Ω+ and Ω$ are the 
semispheres for the directions of propagation of 
downwelling transmitted radiation (μ ≥ 0) and 
upwelling reflected radiation (μ ≤ 0), respectively.  For 
convenient presentation of the boundary conditions, we 
introduce the set 

 

t = {z, r⊥, s: z = 0, s ∈ Ω+},  b = {z, r⊥, s: z = H, s ∈ Ω$}. 
 

Under assumption of stationary state of the 
medium and constant insolation source power, the field 
of quasimonochromatic polarized radiation is most 
adequately described by the four-component vector 
Φ(r, s), whose components are the Stokes parameters.  
By the common name of the Stokes parameters, a wide 
variety of interrelated quantities describing the 
radiation polarization state1,11$14 is meant.  For 
macroscopic isotropic and plane stratified medium, the 
Stokes vector is determined as a solution to the general 
vector boundary-value problem (GVBVP) of the 
transfer theory 

 

KΦ = F(z, s),   Φ⏐t = F 

0(r⊥, s),   
 

Φ⏐b = ε RΦ + FH(r⊥, s) (1) 
 

with the following linear operators: 
the transfer operator 

 

D ≡ (s, grad) + σ(z) = Dz + ⎝
⎛

⎠
⎞s⊥, 

∂
∂r⊥

  , 

Dz ≡ μ 
∂
∂z + σ(z); 

the integral of collisions 

SΦ ≡ σs(z) ⌡⌠
Ω

 P(z, s, s′) Φ(z, r⊥, s′) ds′; 

 
the reflection operator 

 

[RΦ](H, r⊥, s) ≡ ⌡⌠
Ω+

 q(r⊥, s, s+) Φ(H, r⊥, s+) ds+  (2) 

 
which describes a single event of radiation interaction 
with the underlying surface; the parameter 0 ≤ ε ≤ 1 
indicates the event of radiation interaction with the 
boundary z = H; q(r⊥, s, s+) is the reflection phase 
matrix; the integrodifferential operator K ≡ D $ S; the 
one-dimensional operator Kz = Dz $ S; P(z, s, s') is the 
scattering phase matrix1; σ(z) and σs(z) are the vertical 
profiles of the extinction and scattering coefficients; 

F, F 

0, and FH are the insolation sources. 
Boundary problem (1) is linear and we seek for its 

solution in the form of the superposition 
 

Φ(z, r⊥, s) = Φ0 + ΦR;  Φ0 = Φu
b + Φu

0 + Φu
H + Φa , 

 
where Φ0 is the background radiation in the layer and 
ΦR is the illumination produced by the reflecting 
boundary. 

Directly transmitted radiation from the source on 
the boundary z = 0 is the solution of the Couchy vector 
problem (CVP) 

 

DΦu
0 = 0,  Φu

0⏐t = F 

0(r⊥, s),  Φu
0⏐b = 0;  s ∈ Ω+. (3) 

 
Directly transmitted radiation from the source on 

the boundary z = H is the solution of the CVP 
 

DΦu
H = 0,  Φu

H⏐t = 0,  Φu
H⏐b = F 

H(r⊥, s);  s ∈ Ω$. (4) 
 

Directly transmitted radiation from internal 
sources is the solution of the CVP 

 

DzΦu
b = F,   Φu

b⏐t = 0,   Φu
b⏐b = 0;   s ∈ Ω. (5) 

 

Multiply scattered background radiation is the 
solution of the problem with the vacuum boundary 
conditions 

 

KΦa = SΦu
b + SΦu

0 + SΦu
H, Φa⏐t = 0, Φa⏐b = 0. 

 

It includes three components: Φ= = Φa
b + Φa

0 + Φ a
H that 

are the solutions of the following first vector boundary-
value problems (FVBVPs): 

 

KzΦa
b = SΦu

b,  Φa
b⏐t = 0,  Φa

b⏐b = 0, (6) 
 

KΦa
0 = SΦu

0,  Φa
0⏐t = 0,  Φa

0⏐b = 0,  (7) 
 

KΦa
H = SΦu

H,  Φ a
H⏐t = 0,  Φ a

H⏐b = 0.  (8) 
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The background radiation in the layer with 
transparent or absolutely black (nonreflecting) 
boundaries is the solution of the FVBVP 

 

KΦ0 = F,   Φ0⏐t = F 

0,   Φ0⏐b = F 

H. (9) 
 
It includes three background components:  

Φ0 = Φ0
b + Φ0

0 + Φ0
H, each can be calculated 

individually.  If problem (9) is one-dimensional 
(horizontally homogeneous), it can be solved 
numerically1 for the total background Φ0 or for each 

component Φ0
b, Φ0

0, or Φ0
H of practical or methodical 

interest.  In case of using the IF method for 
horizontally homogeneous problem (9) or the IF or 
SFC method for three-dimensional horizontally 
homogeneous plane layer with horizontal inhomogeneity 

of either F
0 or F

H, or F
0 and F

m simultaneously, 
problem (9) must be solved individually for the 

components Φ0
b, Φ0

0, and Φ0
H, respectively. 

Let us consider the background radiation of the 

layer Φ0
0 = Φu

0 + Φa
0 $ the solution of the FVBVP 

 

KΦ0
0 = 0,   Φ0

0⏐t = F 

0(r⊥, s),   Φ0
0⏐b = 0, (10) 

 

which comprises directly transmitted radiation Φu
0 from 

the source $ the solution of CVP (3) $ and multiply 

scattered radiation Φa
0 in the layer with transparent 

boundaries $ the solution of FVBVP (7). 
The background radiation of the layer  

Φ0
m = Φu

H + Φ a
m is the solution of the FVBVP 

 

KΦ0
H = 0,   Φ0

H⏐t = 0   Φ0
H⏐b = F 

H(r⊥, s). (11) 
 

It comprises directly transmitted radiation Φu
m from the 

source $ the solution of CVP (4) $ and multiply 

scattered radiation Φa
m in the layer with nonreflecting 

boundaries $ the solution of FVBVP (8). 

The background radiation Φ0
b = Φu

b + Φa
b is the 

solution of one-dimensional FVBVP 
 

KzΦ0
b = F,   Φ0

b⏐t = 0,   Φ0
b⏐b = 0. (12) 

 

It comprises directly transmitted radiation Φu
b from the 

internal sources $ the solution of CVP (5) $ and 

multiply scattered radiation Φa
b in the layer with 

vacuum boundaries $ the solution of FVBVP (6). 
The problem for the adjacent illumination is the 

general vector boundary-value problem 
 

KΦR = 0,  ΦR⏐t = 0,  ΦR⏐b = εRΦR + εE(r⊥, s), (13) 
 

where E(r⊥, s) = RΦ0 is the brightness (illuminance, 
irradiance) of the boundary produced by the 
background radiation.  It comprises four components of 
the source: 
 

E(r⊥, s) = Eu
b + Eu

0 + Eu
H + Ea,   Eu

b = RΦu
b,   Eu

0 = RΦu
0,  

Eu
H = RΦu

H, Ea = RΦa, 

 

that produce four components of illumination 
 

ΦR = ΦRu
b  + ΦRu

0  + ΦRu
H  + ΦRa 

 

that are the solutions of the following general vector 
boundary-value problems: 

KΦRu
b  = 0,  ΦRu

b ⏐t = 0,  ΦRu
b ⏐b = εRΦRu

b  + εEu
b, (14) 

KΦRu
0  = 0,  ΦRu

0 ⏐t = 0,  ΦRu
0 ⏐b = εRΦRu

0  + εEu
0, (15) 

KΦRu
H  = 0,  ΦRu

H ⏐t = 0,  ΦRu
H ⏐b = εRΦRu

H  + εEu
H,  (16) 

KΦRa = 0,  ΦRa⏐t = 0,  ΦRa⏐b = εRΦRa + εEa.  (17) 

 
In the solutions of problems (14)$(17), we can 

consider pairwise components 
 

ΦRu
b  = ΦRu0

b  + ΦRus
b ,  ΦRu

0  = ΦRu0
0  + ΦRus

0 , 

ΦRu
H  = ΦRu0

H  + ΦRus
H ,  ΦRa = ΦRa0 + ΦRas, 

 

where ΦRu0
b , ΦRu0

0 , ΦRu0
H , and ΦRa0 are the directly 

transmitted radiation components from the boundary 
z = H. They are the solutions of CVPS 

 

DΦRu0
b  = 0,  ΦRu0

b ⏐t = 0,  ΦRu0
b ⏐b = Eu

b; 

DΦRu0
0  = 0,  ΦRu0

0 ⏐t = 0,  ΦRu0
0 ⏐b = Eu

0; 

DΦRu0
H  = 0,  ΦRu0

H ⏐t = 0,  ΦRu0
H ⏐b = Eu

H; 

DΦRa0 = 0,   ΦRa0⏐t = 0,   ΦRa0⏐b = Ea . (18) 
 

Here ΦRus
b , ΦRus

0 , ΦRus
H , and ΦRas are the components of 

radiation multiply scattered in the layer and re-
reflected from the boundary z = H. They are the 
solutions of GVBVPs 
 

KΦRus
b  = 0,  ΦRus

b ⏐t = 0,  ΦRus
b ⏐b = εRΦRus

b  + εERu0
b , (19) 

KΦRus
0  = 0,  ΦRus

0 ⏐t = 0,  ΦRus
0 ⏐b = εRΦRus

0  + εERu0
0 , (20) 

KΦRus
H  = 0,  ΦRus

H ⏐t = 0,  ΦRus
H ⏐b = εRΦRus

H  + εERu0
H , (21) 

KΦRas = 0,  ΦRas⏐t = 0,  ΦRas⏐b = εRΦRas + εERa0  (22) 

 

with the sources ERu0
b  = RΦRu0

b , ERu0
0  = RΦRu0

0 ,  

ERu0
H  = RΦRu0

H , and ERa0 = RΦRa0. 
In case of separation of contributions from 

multiple scattering to the background radiation, we 
arrive at separation of the brightness components from 
a substrate 

 

Ea = Ea
b + Ea

0 + E a
H,  Ea

b
 = RΦa

b,  Ea
0

 = RΦa
0,  E a

H
 = RΦa

H, 

 

and instead of Eq. (17), we obtain three GVBVPs for 

the components ΦRa = ΦRa
b  + ΦRa

0  + ΦRa
H : 
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KΦRa
b  = 0,  ΦRa

b ⏐t = 0,  ΦRa
b ⏐b = εRΦRa

b  + εEa
b, (23) 

KΦRa
0  = 0,  ΦRa

0 ⏐t = 0,  ΦRa
0 ⏐b = εRΦRa

0  + εEa
0, (24) 

KΦRa
H  = 0,  ΦRa

H ⏐t = 0,  ΦRa
H ⏐b = εRΦRa

H  + εE a
H.  (25) 

 

If we consider the individual solution components 
of the initial general vector boundary-value problem1 
Φ = Φb + Φ0 + ΦH, corresponding to individual 

problems with the sources F, F 0, and F H, 
respectively, 

 

KΦ
b = F,  Φb⏐t = 0,  Φb⏐b = εRΦ

b,  (26) 

KΦ
0 = 0,  Φ0⏐t = F 

0,  Φ0⏐b = εRΦ
0,  (27) 

KΦ
H = F,  ΦH⏐t = 0,  ΦH⏐b = εRΦ

H + F 

H, (28) 
 

the superpositions take place 
 

Φ
b = Φ0

b + ΦR
b,  Φ0 = Φ0

0 + ΦR
0,  ΦH = Φ0

H + ΦR
H, 

 

where the background components Φ0
b, Φ0

0, and Φ0
H are 

determined by solving problems (12), (10), and (11) 

and corresponding illuminations ΦR
b, ΦR

0, and ΦR
H 

satisfy the general vector boundary-value problems 
 

KΦR
b = 0,  ΦR

b⏐t = 0,  ΦR
b⏐b = εRΦR

b + εE0
b,  (29) 

KΦR
0 = 0,  ΦR

0⏐t = 0,  ΦR
0⏐b = εRΦR

0 + εE0
0, (30) 

KΦR
H = 0,  ΦR

H⏐t = 0,  ΦR
H⏐b = εRΦR

H + εE0
H  (31) 

 

with the sources E0
b = RΦ0

b, E0
0 = RΦ0

0, and E0
H = RΦ0

H.  
It is evident that the sources in problems (13), (17), 
and (18) are in essence the superpositions 

 

E = E0
b + E0

0 + E0
H,  E0

b = Eu
b + Ea

b,  E0
0 = Eu

0 + Ea
0,  

E0
H = Eu

H + E a
H,  Ea = Ea

b + Ea
0 + E a

H,  Ea
b = RΦa

b,   

Ea
0 = RΦa

0,  E a
H = RΦa

H. 

 

If in the solutions of problems (29)$(31) we 
consider the components for the directly transmitted, 
unscattered, and multiply scattered radiation 

 

ΦR
b = ΦR0

b  + ΦRs
b ,  ΦR

0 = ΦR0
0  + ΦRs

0 ,  ΦR
H = ΦR0

H  + ΦRs
H , 

ΦR0
b  = ΦRu0

b  + ΦRa
b ,  ΦR0

0  = ΦRu0
0  + ΦRa

0 ,  

ΦR0
H  = ΦRu0

H  + ΦRa
H , 

 

we will obtain the following set of problems for their 
determination: 
 

DΦR0
b  = 0,  ΦR0

b ⏐t = 0,  ΦR0
b ⏐b = E0

b;  (32) 

KΦRs
b  = 0,  ΦRs

b ⏐t = 0,  ΦRs
b ⏐b = εRΦRs

b  + εER0
b ;  (33) 

 

DΦR0
0  = 0,  ΦR0

0 ⏐t = 0,  ΦR0
0 ⏐b = E0

0;  (34) 

KΦRs
0  = 0,  ΦRs

0 ⏐t = 0,  ΦRs
0 ⏐b = εRΦRs

0  + εER0
0 ;  (35) 

DΦR0
H  = 0,  ΦR0

H ⏐t = 0,  ΦR0
H ⏐b = E 0

H;  (36) 

KΦRs
H  = 0,  ΦRs

H ⏐t = 0,  ΦRs
H ⏐b = εRΦRs

H  + εER0
H ,  (37) 

 

where ER0
b  = RΦR0

b , ER0
0  = RΦR0

0 , and ER0
H  = RΦR0

H . 
Boundary-value problems (14)$(17), (19)$(25), 

(26)$(31), (33), (35), and (37) with the sources on the 
boundary z = H, describing different approximations for 
the illumination calculation in the layer due to the 
influence of the reflecting boundary, are the particular 
cases of general vector boundary-value problem (13). 

The parameter ε (sometimes we assume that ε = 1) 
is introduced to specify the form of the dependence of 
the solution of problem (13) on the characteristics of 
the reflection operator R.  Because the source e(r⊥, s) 
is usually determined as a contribution from a single 
reflection of the background radiation, the power of the 
parameter ε corresponds to the multiplicity of the 
radiation interaction with the boundary. 

Let us introduce a parametric series (perturbation 
series) in the multiplicity of the radiation reflection 
from the underlying surface 

 

ΦR(z, r⊥, s) = ∑
k=1

∞

 εk Φk(z, r⊥, s), (38) 

 

with the terms that satisfy the system of radiative 
transfer equations connected with the recursion 
relations 

 

k = 1:  KΦ1 = 0,  Φ1⏐t = 0,  Φ1⏐b = E(r⊥, s), (39) 
 

k ≥ 2:  KΦk = 0,  Φk⏐t = 0,  Φk⏐b = RΦk$1(H, r⊥, s). (40) 
 

For application of the finite-difference methods, 
special measures for limitation of the layer extension in 
the horizontal plane are necessary.  Most effective and 
natural is the approach based on the determination of 
the influence functions by the Fourier transform 
method.1, 15  In so doing, three-dimensional problem is 
reduced to a problem for one-dimensional layer of finite 
height.  Simultaneously, factorization of the solution 
takes place: the coordinate r⊥ is substituted by the 
parameter ! and the problem for the SFC is solved for 
the fixed values of this parameter. 

 

SOLUTIONS OF THE FIRST VECTOR 

BOUNDARY-VALUE PROBLEMS BY THE VIF 

AND VSFC METHODS 
 

Each problem of the system of equations (39)$
(40) is the FVBVP of the form 
 

KΦ = 0,  Φ⏐t = 0,  Φ⏐b = f(r⊥, s) (41) 
 

with absolutely transparent (nonreflecting) boundaries 
having the zero albedos and the source on the level 
z = H: 
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f(r⊥, s) = 
⎩⎪
⎨
⎪⎧

>

E(r⊥, s) for k = 1,
 

[RΦk$1](H, r⊥, s) for k ≥ 2,
 

 
which  is analogous to problems (11), (26), and (27). 

The first boundary-value problem (9) for the total 
background Φ0 is solved by the IF or SFC methods 
individually for each component (10), (11), and (12).  
The total value of the background is then obtained as a 
superposition of values of its individual components by 
virtue of linearity of boundary-value problem (9). 

In the present paper, we restrict ourselves to the 
consideration of the first vector boundary-value 
problem (41) for the three-dimensional radiative 
transfer equation, which with the help of the Fourier 
transform in the coordinate r⊥ 

 

g(p) ≡ F[f(r⊥)](p) = ⌡⌠
$∞

∞

 f(r⊥) exp [i(p, r⊥)] dr⊥, 

 
where the spatial frequency p = {px, py} takes only real 
values ($∞ < px, p3 < ∞), reduces to the boundary-
value problem for the one-dimensional parametric 
complex radiative transfer equation (b ≡ F[Φ]) 

 
L(p) B = 0,   B⏐t = 0,   B⏐b = g(p, s) (42) 
 

with the operator 
 

L(p) ≡ Dz $ i(p, s⊥) $ S, 

(p, s⊥) = px sinϑ cosϕ + py sinϑ sinϕ. 

 

Various possible polarization states of a plane 
transverse-electric wave in general are described by the 
vector Φ comprising four real components Φ1, Φ2, Φ3, 
and Φ4, named the Stokes parameters.  These 
components have the dimensionality of the intensity 
and are the coefficients in the expansion of the vector 
Φ = {Φm}, m = 1, ..., M, M = 4, in unit vectors im of a 
certain coordinate system 

 

Φ = i1 Φ1 + i2 Φ2 + i3 Φ3 + i4 Φ4, (43) 
 

which depends on the method of description of the 
polarized radiation.1, 8$14 

The solution of vector problem (41) we search for 
the fixed coordinate system, that is, we believe that all 
parameters of the Stokes vector have expansions 
analogous to Eq. (43).  The polarization states of the 
source f = {fn}, n = 1, ..., N, N ≤ 4, and radiation Φ 
may differ.  Depending on the optical properties of a 
scattering, absorbing, and polarizing medium, as a 
result of transfer, the radiation in the layer may be 
polarized for unpolarized source; its state and/or 
degree of polarization may change for the polarized 
source; beginning with a certain multiplicity of 
scattering, the number of nonzero components of 

parameters of the Stokes vector may change:  N ≤ M or 
N ≥ M is possible.1, 8$10 

In general, when the parameters of the Stokes 
vector of the source f comprise noncoincident 
parameters fn, the solution of linear BVKVP (41) may 
be expressed in the form of the superposition 

 

Φ(r, s) = ∑
n=1

N

 Φn(r, s), 

 
whose components are the solution of the set of 
FVBVPs 

 
KΦn = 0,   Φn⏐t = 0,   Φn⏐b = tn fn(r⊥, s) (44) 
 
with the vectors tn ={δmn}, m = 1, ..., M, n = 1, ..., N, 
where δmn is the Kronecker delta symbol.  In analogy 
with the scalar problem of the transfer theory,1$3 for 
horizontally inhomogeneous anisotropic function of the 
source fn on the boundary z = H, when the spatial and 
angular variables cannot be separated and the 
functional 

 

fn(r⊥, s) = 

1
2π ⌡⌠

Ω$

 δ(s $ s$) ds$ ⌡⌠
$∞

∞

 fn(r ′⊥, s$) δ(r⊥ $ r ′⊥) dr ′⊥, 

 
can be introduced, the solution of vector problem (44) 
for fixed n = 1, ..., N has the form of the vector linear 
functional 
 

Φn = (Θn, fn) = 

1
2π ⌡⌠

Ω$

 ds$ ⌡⌠
$∞

∞

 fn(r ′⊥, s$) Θn(s$; z, r⊥ $ r′⊥, s) dr ′⊥. 

 
The vector influence functions (VIFs) Θn(s$; z, r⊥, s) = 
 {Θmn}, n = 1, ..., N, whose components are the Stokes 
parameters Θmn(s$; z, r⊥, s), m = 1, ..., M, are the 
solution of the set of FVBVPs 

 
KΘn = 0,   Θn⏐t = 0,   Θn⏐b = tn fδ(s

$; r⊥, s) (45) 
 
with the parameter s$ and the source function  
f
δ
(s$; r⊥, s) = δ(r⊥)δ(s $ s$). 

The components of the Stokes vector Φn = {Φmn} 
are calculated with the help of the linear scalar 
functional 

 

Φmn = (Θmn, fn) = 
 

= 
1
2π ⌡⌠

Ω$

 ds$ ⌡⌠
$∞

∞

 Θmn(s$; z, r⊥ $ r ′⊥, s) fn(r ′⊥, s$) dr ′⊥. (46) 

 

Now we introduce the tensor Π specified by N 
Stokes vectors Θn n = 1, ..., N, and agree to write 
conventionally the IF tensors (IFTs) in the form of a 
table (matrix) 
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Π = 

⎩
⎨
⎧

⎭
⎬
⎫

Θ11 ... Θ1n ... Θ1N

....................
Θm1 ... Θmn ... ΘmN

...................
ΘM1 ... ΘMn ... ΘMN

 . (47) 

 

The first subscript m = 1, ..., M, M ≤ 4 of the 
components Θmn of the tensor Π denotes the serial 
number of the Stokes parameter of VIF Θn and the 
second subscript n = 1, ..., N, N ≤ 4, denotes the serial 
number of the source vector tn in the set of problems 
(44) describing the model for calculation of VIF Θn 
and therefore components of tensor Π (47). 

In analogy with the definition of a scalar product 
of the tensor of the vector a from the right, which is 
also named the linear vector function of the vector16 =, 
we introduce the linear vector functional of the vector 
a as a scalar product of the influence function tensor Π 
on the vector = = {an}, n = 1, ..., N, N ≤ 4, from the 
right, the result of which is a new vector 

 

b = (Π, a) = {bm},  m = 1, ..., M,  M ≤ 4, (48) 
 

with the components 
 

bm = ∑
n=1

N

 (Θmn, an) = 

= (Θm1, a1) + ... + (Θmn, an) + ... + (ΘmN, aN). 

 

With the help of definition (48), the solution of 
BVKVPs (41) is expressed as a linear vector functional 
of the vector f in the form  

 

Φ = (Π, f) = {Φm},  m = 1, ... , M,  M ≤ 4, (49) 
 
where the components of the Stokes vector 

 

Φm = ∑
n=1

N

 (Θmn, fn) = ∑
n=1

N

 Φmn = 

 

= (Θm1, f1) + ... + (Θmn, fn) + ... + (ΘmN, fN) 

 
are the linear combinations of the linear scalar functionals 
Φmn = (Θmn, fn) determined by formula (46). 

The solution of complex vector problem (42) is 
represented by the superposition 

 

B(z, p, s) = ∑
n=1

N

 Bn(z, p, s), 

 

whose components are the solution of the set of 
FVBVPs for the complex transfer equation 

 

L(p) Bn = 0,  Bn⏐t = 0,  Bn⏐b = tn gn(p, s).  (50) 
The solution of problem (50) for fixed 

n = 1, ..., N is obtained in the form of the vector linear 
functional 

 

Bn(z, p, s) = (Ψn, gn) = 

1
2π ⌡⌠

Ω$

 Ψn(s$; z, p, s) gn(p, s$) ds$, 

 
whose kernel in the vector spatial-frequency 
characteristic (VSFC) Ψn(s$; z, p, s) with the 
parameters s$ and p. It is the solution of FVBVPs for 
the complex transfer equation 

 
L(p) Ψn = 0,  Ψn⏐t = 0,  Ψn⏐b = tn gδ

(s$; p, s) (51) 

 
with the source function g

δ
(s$; p, s) =  

= F[f
δ
(s$; r⊥, s)] = δ(s $ s$). 

The boundary-value problem (51) is the Fourier 
transform of boundary problem (45) and VIF and 
VSFC are related with the expressions 

 

Θn = F$1[Ψn],  Ψn = F[Θn]. 

 
The components of the Stokes vector Bn = {Bmn} 

are calculated with the help of the linear scalar 
functional 

 
Bmn(z, p, s) = (Ψmn, gn) = 
 

= 
1
2π ⌡⌠

Ω$

 Ψmn(s$; z, p, s) gn(p, s$) ds$. (52) 

 
Now we introduce the tensor Γ determined by N 

Stokes vector Ψn, n = 1, ..., N, and agree to write the 
tensor SFC (TSFC) in the form of table (matrix) 

 

Γ = 

⎩
⎨
⎧

⎭
⎬
⎫

Ψ11 ... Ψ1n ... Ψ1N

....................
Ψm1 ... Ψmn ... ΨmN

...................
ΨM1 ... ΨMn ... ΨMN

 . (53) 

 
With the help of definition (48), the solutions of 

the FVBVP for parametric complex transfer equation 
(42) are determined as a linear vector functional of the 
vector g in the form 

 
B = (Γ, g) = {Bm},  m = 1, ... , M,  M ≤ 4, (54) 
 
where the components of the Fourier transform of the 
Stokes vector 
 

Bm = ∑
n=1

N

 (Ψmn, gn) = ∑
n=1

N

 Bmn = 

 

= (Ψm1, g1) + ... + (Ψmn, gn) + ... + (ΨmN, gN) 
 

are the linear combinations of the linear scalar 
functionals Bmn = (Ψmn, gn) determined by formula 
(52). 
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To solve diffraction problems for spherical 
particles and problems of acoustics and scattering of 
electromagnetic radiation, the Š-matrix method17, 18 is 
widely used.  The linear transform (Š-matrix) relates 
the coefficients of expansion of incident and scattered 
fields.  The Š-matrix depends on the choice of the 
coordinate system, but in a fixed coordinate system the 
Š-matrix is the invariant under the parameters of 
incident radiation. 

The Stokes parameters of the incident and 
scattered radiation are related by a linear transform.  
The tensors of IF and SFC are associated with the Š 
matrices: as Š matrices, TIF and TSFC depend on the 
representation of the parameters of the Stokes vector 
and are invariant under the Stokes parameters of the 
radiation source. 

In addition to models of VIF (45) and VSFC (51), 
the set of basic models comprises: the vector influence 
function1, 10 

 

Θrn(z, r⊥, s) = 
1
2π ⌡⌠

Ω$

 Θn(s$; z, r⊥, s) ds$ 

 

$ the solution of the first boundary-value problem 
 

KΘrn = 0,  Θrn⏐t = 0, Θrn⏐b = tn δ(r⊥); 
 

the vector spatial-frequency characteristic 
 

Ψrn(z, p, s) = F[Θrn] = 
1
2π ⌡⌠

Ω$

 Ψn(s$; z, p, s) ds$ 

 

$ the solution of the first vector complex boundary-
value problem 

 

L(p) Ψrn = 0,  Ψrn⏐t = 0,  Ψrn⏐b = tn; 
 

the vector influence function 
 

Θzn(s$; z, s) = ⌡⌠
$∞

∞

 Θn(s$; z, r⊥, s) dr⊥ 

 

$ the solution of the first one-dimensional vector 
boundary-value problem 

 

KzΘzn = 0,  Θzn⏐t = 0,  Θzn⏐b = tn δ(s $ s$); 
 

the vector transmission function1, 10 
 

Wn(z, s) = 
1
2π ⌡⌠

Ω$

 ds$ ⌡⌠
$∞

∞

 Θn(s$; z, r⊥, s) dr⊥ = 

 ⌡⌠
$∞

∞

 Θrn(z, r⊥, s) dr⊥ = 
1
2π ⌡⌠

Ω$

 Θzn(s$; z, s) ds$ 

$ the solution of the first one-dimensional vector 
boundary-value problem 

 

Kz Wn = 0,  Wn⏐t = 0,  Wn⏐b = tn . 

SOLUTION OF GENERAL VECTOR BOUNDARY-

VALUE PROBLEMS BY THE VIF AND VSFC 

METHODS 
 
Let us take advantage of the above-formulated 

models for VIF and VSFC and represent solutions of 
the first vector boundary-value problems in the form of 
the vector linear functionals, whose kernels are the TIF 
and TSFC, to construct the solution of general vector 
boundary-value problem (13).  The Fourier transform 
of reflection operator (2) we determine from the 
formula (v ≡ F[q]) 

 
[TB](H, p, s) ≡ F[RΦ] =  

= 
1

(2π)2 ⌡⌠
$∞

∞

 dp′ ⌡⌠
Ω+

 v(p $ p′, s, s+) B(H, p′, s+) ds+. 

 

Now we introduce operations of radiation interaction 
with the boundary expressed in terms of TIF (47) 

 

[Gf](s$; H, r⊥, s) ≡ R(Π, f) =  

=⌡⌠
Ω+

 g(r⊥, s, s+) (Π, f) ds+ 

 

and in terms of TSFC (53) 
 

[Qg](s$; H, p, s) ≡ F[Gf] = T(Γ, g) = 

= 
1

(2π)2 ⌡⌠
$∞

∞

 dp′ ⌡⌠
Ω+

 v(p $ p′, s, s+) (Γ, g) ds+. 

 

The components of series (38) we express in terms 
of the TIF 

 

Φ1 = (Π, E);  Φk = (Π, RΦk$1) = (Π, Gk$1 E). 

 

As a result, we obtain the asymptotically accurate 
solution of GVBVP (13) 

 

ΦR = (Π, YE);   YE ≡ ∑
k=0

∞

 (Π, Gk 
E) (55) 

 

$ the sum of the Neumann series in the multiplicity of 
reflection from the boundary. 

In terms of the Fourier transforms, we derive 
 

BR(z, p, s) ≡ F[ΦR] = ∑
k=0

∞

 εk Bk(z, p, s), (56) 

 
where the terms are the solution to the system of 
recursion problems (W = F[E]) 

 

k = 1:  L(p) B1 = 0,  B1⏐t = 0,  B1⏐b = W(p, s); 

k ≥ 2:  L(p) Bk = 0,  Bk⏐t = 0,  Bk⏐b = TBk$1(H, p, s), 

 

They are determined as functionals 
 



770   Atmos. Oceanic Opt.  /October  1997/  Vol. 10,  No. 10 T.A. Sushkevich et al. 
 

B1 = (Γ, W);  Bk = (Γ, TBk$1) = (Γ, Qk$1 W). 

 
The sum of series (56) is the Fourier transform of the 
asymptotically accurate solution to GVBVP (13) in a 
class of slowly increasing functions15 

 

BR = (Γ, ZW);   ZW ≡ ∑
k=0

∞

 (Γ, Qk W) (57) 

 
that is, the sum of the Neumann series in the 
multiplicity of radiation interaction with the boundary 
(in terms of the Fourier transforms). 

Representation of the solution of the general vector 
boundary-value problem (13) in the form of functionals 
(55) and (57) that define the explicit relations of the 
solution with the sources and reflection characteristics of 
the underlying surface we call the vector optical transfer 
operator (VOTO).  The Neumann series YE and ZW 
determine the scenario and the Fourier transform of the 
scenario of optical image of the spatially inhomogeneous 
anisotropic reflecting boundary of the layer formed as a 
result of multiple scattering of radiation within the layer 
and radiation re-reflection from the layer bottom 
considering the polarization or depolarization mechanisms 
not only within the layer, but also on its boundary. 

The suggested constructive approach is efficient 
for mathematical modeling of optical and millimeter 
radiation transfer through natural media and for 
solving multidimensional problems of radiative 
correction in case of remote sensing of objects on the 
Earth’s surface, in the theory of vision and image 
transfer through turbid media. 

The work was supported in part by the Russian 
Foundation for Fundamental Researches (code of the 
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