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In this paper we deal with the flux of aerosol particles on an underlying 
surface.  A relation connecting the instantaneous flux with the instantaneous near-
surface concentration is obtained for this (generally speaking, random) value.  This 
made it possible to obtain the expression for the distribution function of the 
particles’ flux.  Using these results, the mathematical expectation, variance, and 
alternation of the flux are estimated.  Some data on the intensity of radio nuclides 
ascending in the zone of Chernobyl nuclear power plant are taken as input 
parameters. 

 

An underlying surface can be a sufficiently 
powerful source of aerosol particles in some cases.  For 
instance, this applies to the ocean surface emitting 
aerosols of sea salts.  Usually, particle emission is 
estimated from direct measurements, by indirect 
gradient methods, and from data on admixture 
concentration above the underlying surface.1 

This paper deals with the particle flux at the 
underlying surface.  A relation connecting the 
instantaneous flux with the instantaneous near-surface 
concentration is obtained for the parameter which is, 
generally speaking, a random value.  This made it 
possible to obtain an expression for the probability 
density function of the particles’ flux. 

Using these results, we have estimated 
mathematical expectation, variance, and alternation of 
the flux by using a one-dimensional model of aerosol 
admixture dispersal in the boundary layer of the 
atmosphere.  The model is valid for horizontally 
homogeneous fragments of the underlying surface.  The 
results of the study of nuclide ascent rate in the zone of 
Chernobyl accident were taken as the initial data. 

Let us consider the definition of the flux of aerosol 
particles from an underlying surface: 

 

q = (Uz C)  
z=z

0

, (1) 

 

where q is the flux of particles; Uz is the vertical 
component of wind velocity; C is the aerosol 
concentration; z0 is the vertical coordinate of the 
underlying surface.  According to Eq. (1), the flux is a 
product of two random (due to atmospheric turbulence) 
values, thus being a random value too.  The flux q is 
an instantaneous (defined at the moment t), single-
point (defined at a point with coordinates x, y, and z0) 
parameter.  Its meaning is the number of  
 

particles emitted from a unit area of the underlying 
surface per unit time. 

According to Eq. (1), the value q depends on the 
instantaneous near-surface value of the admixture 
concentration, i.e., q = q(C).  Let us assume that the 
concentration is low near the underlying surface.  Then, 
the flux can be approximately represented in the form 
 

q(C) ≈ q(0) + 
 ∂q(C)

∂C  
 

C=0 C = VC 
 

z=z
0

. (2) 

 
The right-hand side of Eq. (2) takes into account that the 
flux always equals zero for zero concentration.  Since the 
derivative of q with respect to C in Eq. (2) is taken for a 
non-random, zero concentration value, and wind velocity 
also vanishes on the underlying surface, we suppose that 
the value V is not random.  According to Eq. (2), V has 
the meaning of the characteristic linear rate of emission of 
the aerosol particles from the underlying surface. 

The relation (2) justifies the fact that the 
instantaneous value of particles’ flux is proportional to 
the instantaneous value of their concentration near the 
underlying surface.  Similar, but averaged relation is 
usually taken for an admixture falling onto the 
underlying surface.2  Thus, the standard boundary 
condition for the admixture concentration also implicitly 
supposes that the near-surface concentration value is low 
and, therefore, that the Eq. (2) is valid. 

According to Eq. (2) the probability density 
function of the flux q can be assigned if and only if the 
probability density function of the aerosol particles’ 
concentration is known for z = z0.  The solution to the 
problem of determining the single-point probability 
density function f(C) for the concentration of passive 
admixtures dispersed in the turbulent atmosphere, and 
experimental justification of the obtained theoretical 
results are described in Ref. 3: 
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$
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where γC is the probability of observing non-zero 
concentration (this parameter is called alternation); 
δ(...) is the delta-function; C is the mathematical 
expectation of the admixture concentration; β is the 
second parameter of the probability density function; 
erf(...) is the probability integral. 

The second parameter β can be most conveniently 
determined by the expression for the concentration 
variance σ2 (see Ref. 3) 
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Taking into account the linear connection between q 
and C, let us write the probability density function of 
the particles’ flux fq(q, t) 
 

fq(q, t) = 
1
V

 f ⎝
⎛

⎠
⎞ q

 V
, t  

 

z=z
0

. (5) 

 
Besides, according to Eqs. (2) and (3), we obtain the 
expressions for the values which will be considered 
below: 
 

q$ = V C
$
  

z=z
0

; σ2
q = V2 σ2  

z=z
0
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⎜
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⎠
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z=z
0

, (6) 

 
where σ2

q is the variance of the flux; γ is its alternation. 
The results presented below are based on the 

solution of a semiempirical equation of the turbulent 
diffusion and the equation for the concentration 
variance.2,5  So, let us discuss the boundary conditions 
on the underlying surface. 

The boundary condition for 
$
C has the form2 

 

⎣
⎢
⎡

⎦
⎥
⎤

(Kzz + ν) 
∂C
$

∂z  + V C
$

 

 

z=z
0

 = 0, (7) 

where Kzz is the turbulent diffusion coefficient 
corresponding to the coordinate z; ν is the coefficient of 
particles’ molecular diffusion. 

The boundary condition for σ2 follows from 
Ref. 4: 
 

⎣
⎡

⎦
⎤(Kzz + ν) 

∂σ2

∂z  + 2V σ2  
 

z=z
0

 = 0. (8) 

 
If the process of particles’ dispersal is assumed to 

be horizontally homogeneous and quasistationary, one 

can determine 
$
C and σ2 by semiempirical equations2,5 

 

$ 
∂
∂z (Kzz + ν) 

∂C
$

∂z  = 0;  (9a) 
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For the dissipation rate of the concentration variance 

Eσ, assume, according to Ref. 5 that e
σ
 = ε(q

σ
b
2)$1σ2, 

where ε is the dissipation rate of the turbulent energy 
b2, C

σ
 is an empirical constant. 

It follows from Eq. (9a) that the value q does not 
depend on z: 
 

$ (Kzz + ν) 
∂C
$

∂z  = q$;   z ≥ z0. (10) 

 

Let us first solve the equation (9a) with the 

boundary conditions C
$
(z1) = C1; C

$
(h) = 0, where C1 is 

the mathematical expectation of concentration at height 
z1, and h is the height of the boundary layer of the 
atmosphere. From Eqs. (9a) and (10) it follows that 
 

q$ = ⎣
⎢
⎡

⎦
⎥
⎤

$ (Kzz + ν) 
∂C
$

∂z  

 

z=z
1

 . (11) 

 

Then we solve equation (9a) with the boundary 

condition (11) at z = z0 and 
$
C(z1) = q 1.  Taking into 

account Eqs. (6) and (11), we obtain 
 

V = q$/[C
$
(z0)]. (12) 

 

To obtain the parameter β in Eq. (3), one should 
solve the equation (9b) with the boundary conditions 
(8) and σ2(h) = 0. 

To obtain the mathematical expectation of the flux 

q$, σ2
q, and the emission rate V, it is necessary to know 

Kzz.  In this paper, this value is assigned based on the 
hypothesis5 that 
 

Kij = Cϕ 
b
2

ε  τij, (13) 

 
where Kij is the ijth component of the tensor of 
turbulent diffusion coefficients; Cϕ = 0.13; τij is the 
Reynolds viscous stress tensor.  The hypothesis (13) is 
confirmed by laboratory and field experiments.3 
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To obtain the values ε, b2, and τij, we used the 
algebraic model5 similar to that described in Ref. 6. 

The assumption that the problem is horizontally 
homogeneous and quasistationary makes it possible to 
apply simplified equations of the boundary layer 
dynamics to determining mean values of the wind 
velocity and temperature.  For this purpose, we used a 
numerical-analytical model.7 

In the algebraic and numerical-analytical models 
isolate the boundary atmospheric layer in which the 
relations of the similarity theory2 are used.  Different 
influence of the underlying surface on the turbulent 
regime within the near-surface layer of the atmosphere 
and out of it makes it necessary to consider two-layer 
problems when using the algebraic and numerical-
analytical models.2,7 

In Ref. 1, the rate of wind radionuclide ascent 
from the territories near the Chernobyl nuclear power 
plant was studied experimentally.  The results were 
used for calculations using the above model.  The 
initial data used were obtained under horizontal 
homogeneity and averaged over a three-day interval.  
On the average, thermal stratification of the 
atmosphere was neutral, so the concentration profiles 
obtained for radionuclides 144Ce, 103Ru, 137Cs and 
those of wind velocity up to the height 15 m were close 
to the logarithmic1 ones. 

In calculations, the wind velocity profile was 
reconstructed first from the value of average wind 
velocity at the height z1 = 2 m with the numerical-
analytical model.7  The reconstructed profile was used 
for computing ε, b2, τzz, and Kzz using the algebraic 
model.6  Then the concentration C1 from Ref. 1 and 

normalized by the value 
$
C(z = 1 m) was used for 

computing concentration profiles and concentration 
variance using the algorithm discussed above. 

Since the initial data in Ref. 1 were normalized by 
$
C(z = 1 m), the mean value of the flux and its variance 
were obtained as normalized by the same value. They 
are presented below in conventional units.  At the same 
time, this normalization obviously does not influence 
the flux alternation and the rate of particles’ emission 
from the underlying surface. 

Let us consider the obtained results.  The Table I 

presents the values of 
$
C, σ, and alternation of 

radionuclide concentration γC calculated by the 
above-mentioned algorithm for the following initial 

data: 
$
U(z = 2 m) = 3 m/s, z0 = 0.1 m, neutral 

stratification of the atmosphere, and 
$
C

(z = 1 m) = 1 conv.unit.  The calculated values of the 
normalized radionuclide flux for the isotope 144Ce 
and the characteristic rate of particles’ emission from 
the underlying surface are 2.5⋅10$2 conv.units and 
5.2⋅10$3 m/s, respectively.  The standard deviation 
of the flux is 1.9⋅10$3 conv.units.  By virtue of the 
aforesaid statements, the alternation of the 
radionuclide flux γ, in fact, turned out to be equal to 

unity.  It is characteristic that the alternation of 
concentration γC (see the Table) is considerably less 
than unity.  This is connected with a strong influence 
of turbulence on the distribution of concentration 
over the underlying surface. 

 

TABLE I. Profiles of the radionuclides concentration 
(144Ce), variance, and alternation calculated using the 
data from Ref. 1 

 

z, m 0.5 1.0 2.0 3.0 4.0 

C
$

C
$
 (z = 1 m)

 
1.61 

 
1.00 

 
0.41 

 
0.12 

 
0.02 

σ

C
$
 (z = 1 m)

 
0.32 

 
0.29 

 
0.24 

 
0.16 

 
0.07 

γC 1.00 1.00 0.91 0.50 0.14 

 

The intensity of wind radionuclide ascent 
α = q/p and the empirical coefficient of wind ascent 

R = 
$
C(z = 1 m)/p, where p is the density of aerosol 

fallout on the underlying surface, were analyzed in 
Ref. 1.  The absence of data on the value p does not 
allow one to obtain the values α and R.  So we 

computed their ratio α/R = q/
$
C(z = 1 m). 

According to Ref. 1, the value α/R averaged over 
five experiments is 3.0⋅10$2 m/s.  According to our 
calculations, it is 2.5⋅10$2 m/s.  The coincidence is, 
obviously, quite satisfactory if one takes into account 
that the values of the parameters α and R presented 
in Ref. 1 have a considerable spread. 

Thus, this paper complements the methods for 
determining particle flux from the data on admixture 
concentration, which were mentioned in the 
formulation of the problem, by the possibility of 
determining other practically important statistical 
properties.  Since the sign of the particle flux was 
not specified above, the theoretical results obtained 
are quite applicable to particles’ deposition onto an 
underlying surface, and under conditions of 
competition between particles’ ascent and deposition. 
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