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Analysis of lateral shear interferometer based on hologram recording of an 

amplitude scatterer focused image is presented.  It is shown that spatial filtering of 

the diffraction field provides the interferogram which determines spherical 

aberration of a lens with doubled sensitivity. 

 

In Ref. 1 I considered the case of double-
exposure recording by the Gabor by matching 
speckle-fields of two exposures of an amplitude 
scatterer focused image when it is irradiated with a 
coherent light of a converging quasi-spherical 
waveform with radius of curvature R which does not 
exceed the distance l1 from the scatterer to the 
principal plane of the lens forming the image.  It is 
shown that at the stage of hologram reconstruction 
with a small-aperture laser beam interference pattern 
characterizing spherical aberration of the lens and 
resulting from a combination of the lateral shear 
interferogram in bands of infinite width and the 
interference pattern in bands of equal thickness 
arising from the interference of waves in ($1) and 
(+1) diffraction orders appears in the Fourier plane. 
 Besides, at R < l1 when regular component of the 
amplitude scatterer transmittance at the stage of 
hologram recording overlaps the pupil of a 
controllable lens, in the course of spatial filtering of 
the diffraction field out of the hologram the lateral 
shear interferogram is recorded in the Fourier plane 
with a doubled sensitivity. 

The present paper analyzes some peculiarities in 
formation of interference patterns in diffusively scattered 
fields when at the stage of double-exposure recording 
based on the matching of speckle-fields of the two 
exposures of an amplitude scatterer focused image 
hologram by the Gabor method the scatterer is irradiated 
with a coherent light of a diverging quasi-spherical or 
converging with a radius of curvature R < l1. 

As shown in Fig.1a, the amplitude scatterer 
located in the plane (x1, y1) is irradiated by a coherent 
light with a diverging quasi-spherical wave with the 
radius of curvature R.  Its image is constructed in the 
photoplate plane (x3, y3) by lens L1 and the focused 
image hologram is recorded by the Gabor method in a 
time of first exposure.  Before the second exposure the 
amplitude scatterer is displaced in its plane, for 
 

instance, in the direction of x axis at a distance a, 
while the photoplate is displaced in the opposite 
direction at a distance b = a/μ1, where μ1 is the scale 
transformation coefficient, l2 is the distance from the 
principal plane of the lens L2 to the photoplate. 

 

 

a    b 
 

FIG. 1.  Optical arrangement of recording (a) and 
reconstructing (b) of a double-exposure hologram of an 
amplitude scatterer image: 1, 2, and 3 are amplitude 
scatterer, photoplate-hologram, plane of interference 
pattern recording, respectively; L1, L2 

 are lenses;  p1 

is the objective aperture, p2 is a spatial filter.       
 
After photographic treatment the double-

exposure Gabor hologram recorded by the above 
procedure is exposed to a plane wave from a light 
source used at the stage of recording and interference 
pattern is recorded in the  second focal plane of the 
lens L2 with the focal length f2 (see Fig. 1b).  The 
spatial filtering of the diffraction field is performed 
using an opaque screen p2 with a round hole placed in 
the hologram plane 2.   

According to Ref. 2, if the diameter D0 of the 
illuminated area in the subject plane satisfies the 
condition D0 ≥ dR/(l1 + R), where d is the lens L1 
pupil diameter of the distribution of complex 
amplitude of the field corresponding to first exposure 
at a distance l = f1 (l1 + R)/(l1 + R  $ f1) from the 
lens principal plane takes the following form: 

 
 



552   Atmos. Oceanic Opt.  /August  1997/  Vol. 10,  No. 8 V.G. Gusev 
 

 u1(ξ, η) ∼ exp ⎣
⎢
⎡

⎦
⎥
⎤ik (ξ2 + η

2)

2l
  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

exp 
⎣
⎢
⎡

⎦
⎥
⎤

$ 
ik M (ξ2 + η

2)

2l 2
 F ⎣
⎡

⎦
⎤kM ξ

l1 l
 , 

kM η

l1 l
 ⊗ P1(ξ, η) , (1) 

where ⊗ is the convolution symbol; k is the wave number; M = l1(l1 + R)/R; 
 

F ⎣
⎡

⎦
⎤kM ξ

l1 l
 , 

kM η

l1 l
 = ⌡⌠

 

 

   ⌡⌠
 

 

$∞

∞

[1 $ t(x1, y1)] exp i ϕ0(x1, y1) exp ⎣
⎡

⎦
⎤$ ik (x1 ξ + y1 η) M

l1 l
 dx1 dy1 

 

is the Fourier-transform of the input function  
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$ t(x1, y1)] exp i ϕ0 (x1, y1); 1 $ t(x1, y1) is the 

scattering screen transmittance amplitude being 

a random function of coordinates; ϕ0
 

(x1, y1) is the 
determinate function describing possible phase 
aberrations of the radiation wave front illuminating the 
amplitude scatterer due to optical forming system; 
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is the Fourier-transform of the generalized function of 
p1(x2, y2) exp i ϕ1(x2, y2) of the lens L1 pupil 
(see Ref. 3) considering its axial wave aberration. 

As is evident from Eq. (1), due to spatial 
limitation of the field by the aperture p1 of the lens L1 
(see Fig.1a) each point of the Fourier-transform  
of the input function is broadened in 

 

the plane (ξ, η) up to the size of a subjective speckle.  
The latter is determined by the width of the function 
P1 (ξ, η).   

Complex field amplitude distribution in the 
photoplate plane is a result of the Fresnel 
transformation of the field distribution in the plane of 
the Fourier-transform formation 
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By substituting Eq. (1) into Eq. (2) we obtain 
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Based on the known integral representation of convolution the Eq. (3) takes the following form:  
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is the Fourier-transform of the generalized function of 
pupil of the lens L1. 

Since the width of the function P1 (x3, y3) is of 

the order of λl2/d (see Ref. 4), where λ is the 
wavelength of a coherent light used for the hologram 
recording and reconstruction, let us assume that within 
the hologram area the change in the phase of a 
spherical wave with the radius Rl2/μ1(l1 + R) does not 

exceed π.  Then in the photoplate plane (x3, y3) at the 

diameter D ≤ d ⎝
⎛

⎠
⎞l
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$1

,
 
the quadratic phase factor 
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removed from the integral of convolution with the 
function P1(x3, y3) and the following expression can be 
derived: 
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From Eq. (5) it follows that each point of the 
amplitude scattering screen image in the photoplate 
plane is broadened to the size of a subjective speckle 
determined by the width of function P1(x3, y3) resulted 
from the diffraction of a plane wave on the pupil of the 
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T3

2
,) and by the phase distribution of a diverging 

spherical wave having the curvature of radius 
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Let us write expression describing distribution of 
the complex field amplitude in the photoplate plane 
before recording the second exposure 
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which, according to the abovesaid is reduced to the form 
 

u2(x3, y3) ∼ exp 
⎩
⎨
⎧

⎭
⎬
⎫ik [R + μ1 (l1 + R)]

2 Rl2
 [(x

3
 + b)2

 

+

 

y2

3]
⎩
⎨
⎧ 

 

[1 $ t($ μ1 x3, $ μ1 y3)] exp iϕ0($ μ1 x3 $ μ1 b, $ μ1 y3) ⊗ 

  ⊗ exp ⎣
⎡

⎦
⎤ik x3 b μ1 (l1 + R)

Rl2
 

⎭
⎬
⎫

P1(x3, y3)

 

 

 . (7) 

 

Let us assume that the photolayer exposed to light 
with the intensity  

I(x3, y3) = u1(x3, y3)u*
1(x3, y3) + u2(x3, y3)u*

2(x3, y3),  
 

is developed and the negative is made on the linear 

part of the characteristic blackening curve.  Then, as in 
Ref. 1, at t(x1, y1) << 1 the hologram transmittance in 

Fig.1b τ(x3,
 
y3) for diffusively scattered light 

component is described by the following expression: 
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If the size of a subjective speckle in  
the plane (x3, y3) is small as compared to the period of  
phase function ϕ0 ($μ1x3, $μ1y3) and when  
performing spatial filtering of the diffraction field  
on the optical axis in the hologram plane, 

one can show that the complex field amplitude 
distribution in the second focal plane of the lens L2 
(see Fig. 1b) within the overlaping area of the pupil 
images P1 (see Fig. 1a) for two exposures takes the 
following form: 
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an opaque screen p2 with a round hole (see Ref. 5). 

Assuming that the size of a subjective speckle 
determined by the width of the function P2(x4, y4) in 
the observation plane 3 (see Fig.1b) is small as 
compared to the period of the phase function in Eq. (9) 
modulating speckle-field superposition of correlating 
speckle-fields of the two exposures causes the following 
illumination distribution for the even phase function 
ϕ1(x2, y2) 
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FIG. 2. Optical arrangement of recording interference 
pattern localized in the hologram plane. 
 

From Eq. (10) it follows that in the observation 
plane the subjective speckle-structure is modulated by 
interference fringes.  As in Ref. 1, the interference 
pattern consists of a combination of a lateral shear 
interferogram in the bands of infinite width and 
interference pattern in bands of equal thickness 
characterizing aberration of the controllable lens.  If 

the pattern has doubled sensitivity, then that of a 
lateral shear interferometer is determined by the shear 
value b and the geometric factor G = μ1(l1 + R)/R.  
As R decreases, the interferometer sensitivity increases 
at a given shear value at the expense of the geometric 
factor because the relative inclination angle 
β = bμ1(l1 + R)/Rl2 between the speckle-fields of the 
two exposures at the stage of the hologram recording 
increases.  At R = μ1l1/(1 $ μ1) the sensitivity depends 
only on the lateral shear value b.   

Let now the two-exposure Gabor hologram of an 
amplitude scatterer focused image be reconstructed 
according to Fig. 2 when the lens L2 constructs the 
hologram image in the observation plane 3.  Then for 
the hologram transmittance amplitude τ′(x4, y4) to be 
determined we can use Eqs. (3) and (6).  Based on the 
above assumptions that the period of the phase function 
ϕ0($μ1x3, $μ1y3) exceeds the size of the subjective 
speckle in the hologram plane t(x1, y1) << 1, expression 
for diffusively scattered component of the transmittance 
amplitude takes the following form: 
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where L = l2R/μ1(l1 + R); μ′1 = μ1(l1 + R)/R are 
used to shortten the expression.  

Similarly for the sake of brevity let us assume that 
the lens L2 in Fig. 2 constructs the image with the unit 
magnification, i.e., l3 = l4 = l0.  Then the complex field 
amplitude distribution in the observation plane (x4, y4) is 
determined accurate to the quadratic phase factor 
insufficient for further consideration by the following 
form: 

u′(x4, y4) ∼ τ′(x4, y4) ⊗ P ′
2(x4, y4), (12) 

 

where 
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is the Fourier-transform of the transmittance function 
of the objective aperture p2 of the lens L2.  

By substituting Eq. (11) into Eq. (12) and 
considering the change of the phase function describing 
spherical aberration of the controllable lens to be slow 
one can write the following the complex field 
amplitude distribution within the overlaping zone of 
functions as 

 

p1 ⎣
⎡

⎦
⎤μ1 (l1 + R)

R
 x4, 

μ1 (l1 + R)

R
 y4  , p1 ⎣

⎡
⎦
⎤μ1 (l1 + R)

R
 (x4 $ b), 

μ1 (l1 + R)

R
 y4  

 

u′(x4, y4) ∼ ⎩
⎨
⎧

⎭
⎬
⎫

1 + exp ⎣
⎡

⎦
⎤$ 

i ∂ϕ1 (μ′1 x4, μ′1 y4)
∂ μ′1 x4

 2 μ′1 b   t (μ1 x4, μ1 y4) ⊗ P ′
2(x4, y4). (13) 

 

 

Hence, based on Eq. (13) and on the condition 
that the size of a subjective speckle in the observation 
plane 3 (see Fig. 2) determined by the width of the 

function P ′
2(x4, y4), is much less than the period of the 

phase function modulating the speckle-field gives rise 
to the following illumination distribution: 
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which characterizes the subjective speckle-structure 
modulated by the interference fringes.  The interference 
pattern represents lateral shear interferogram in the bands 
of infinite width, caused by spherical aberration of the 
lens controlled.  The lateral shear interferogram 
sensitivity is in this case doubled at a given shear value.  

In the case of illuminating the amplitude diffuse 
screen by a coherent light with converging quasi-
spherical wave with the radius of curvature R > l1 and 
if the diameter of the diffuse screen illuminated 
D0 ≥ dR/(R $ l1), from Ref. 6  it follows that the 
complex field amplitude distribution at a distance 
l = f1(R $ l1)/(f1 + R $ l1) from the principal plane of 
the lens L1 (see Fig.1a) is described by Eq. (1) with 
M = l1(R $ l1)/R.  Now the Fourier-transform of the 
input function appears between the lens and its second 
focal plane in contrast to the previous case when it is 
formed in the gap between the second focal plane of the 
lens L1 and the photoplate.  For this reason all the 
above expressions are valid if (l1 + R) is replaced by 
(R $ l1).  As a result, the value of lateral shear 
interferometer sensitivity at a given b increases with 
decreasing radius of curvature R because of the 

geometric factor G = μ1(R $ l1)/R and at R = 
μ1l1

μ1 $ 1

the factor is equal to unity. 
In our experiments, single- and double-exposure 

holograms of the amplitude scatterer focused image 
were recorded by the Gabor method on photoplates of 
Micrat VRL type using a He-Ne laser emitting at the 
wavelength λ = 0.63 μm.  As in Ref. 1, the lens with 
the focal length f1 = 160 mm and pupil diameter 
d = 27 mm forming the paraxial image of the scattering 
screen in the photoplate plane with the unity 
magnification was used as a controllable object.   

Figure 3 shows interference pattern in the bands of 
equal thickness characterizing spherical aberration of 
the lens controlled.  In accordance with Fig. 1b it was 
recorded in the focal plane of the camera with the focal 
length f2 = 50 mm when performing spatial filtering of 
the diffraction field on the optical axis by 
reconstructing single-exposure hologram using a small 
aperture (≈ 2 mm) laser beam.   

 

 

 

a   b 
 

FIG. 3.  Interference patterns in the bands of equal 
thickness recorded when performing spatial filtering in 
the hologram plane on (a) and off (b) of the optical 
axis. 

The hologram was recorded when illuminating the 
amplitude scattering screen by a coherent quasi-
spherical wave.  As in Ref. 1, for the case of 
illuminating the screen with a converging quasi-
spherical wave with the radius of curvature R < l1, the 
hologram displacement about the reconstructing laser 
beam (x3 = 8 mm, y3 = 0) leads to a partial spatial 
separation of the diffracted quasi-plane waves in ($1) 
and (+1) diffraction orders (see Fig. 3b) and gives rise 
to an angle between the directions of their propagation.  
Spatial separation of the wave fronts in ($1) and (+1) 
diffraction orders increasing with the increasing 
hologram displacement about the laser beam is caused 
by vignetting which is not evident when the image is 
formed with a telescope optical system of the Keppler 
type (for instance, see Ref. 7).  In this case the results 
of single-exposure Gabor hologram recording (see 
Ref. 8) indicates that only the angle between directions 
of propagation of the waves diffracted in ($1) and (+1) 
diffraction orders appears and this angle increases with 
the increasing hologram displacement with respect to 
the reconstructing laser beam.  Hence, for a given 
hologram point located out of the optical axis the form 
of the frequency transfer function of the optical system 
forming the image (see Ref. 9) determines the angle 
between the directions of the waves diffracted in ($1) 
and (+1) diffraction orders.  As a result, certain 
peculiarities appear when recording the interference 
pattern in the bands of equal thickness (see Fig. 3a).  
The less is the radius of diverging quasi-spherical wave 
of a coherent radiation or a converging one in Ref. 1 
used to illuminate the amplitude scattering screen 1 
(see Fig. 1a) , the less is the diameter of filtering hole 
(see Fig. 1b) wherein the waves diffracted in ($1) and 
(+1) diffraction orders propagate in the same direction.  
The diameter increases as the radius of converging 
quasi-spherical wave decreases (or increases as in 
Ref. 1).  At R = l1 in the absence of vignetting when 
the frequency transfer function of the optical system 
forming the image is uniform and the diameter of the 
filtering hole reaches image size.   

 

 
 

a   b 
 

FIG. 4. Interference patterns recorded when 
performing spatial filtering of the diffraction field in 
the plane of a double-exposure hologram off (a) and on 
(b) the optical axis.  
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In Fig.4a is shown an interference pattern recorded 
when double-exposure Gabor hologram is reconstructed 
with a small-aperture laser beam at the point located on 
the shear axis at a distance of 10 mm from the optical 
axis.  Interference fringes in ($1) and (+1) diffraction 
orders are caused by a doubled exposure of photoplate 
when at the stage of the hologram recording at lateral 
shear value b = 2.1 mm the amplitude scattering screen 
is illuminated by quasi-plane wave.  As in Ref. 1 we 
have additional interference pattern resulted from the 
superposition of inversed quasi-plane wave fronts in the 
zone of overlaping diffraction orders, whereas at the 
stage of the hologram reconstruction on the optical axis 
the illumination distribution in the observation plane 
(see Fig. 4b) is expressed by Eq. (10).  The 
interference pattern resulting from a combination of a 
lateral shear interferogram and interference pattern in 
the bands of infinite thickness characterizes spherical 
aberration of the lens under control.   

According to Fig. 2, in the case of that double-
exposure hologram reconstruction the lateral shear 
interferogram shown in Fig. 5a appears in the 
observation plane when performing spatial filtration of 
the diffraction field using the objective aperture p2.  
This interferogram describes spherical aberration of the 
lens with a doubled sensitivity at a given shear value 
(see Fig. 4).  Spatial filtering is necessary to reduce the 
area, in the observation plane, where the light from 
regular component of the hologram transmittance is 
concentrated.  The area diameter decreases with the 
increasing objective aperture.  However in this case the 
size of a subjective speckle increases in the observation 
plane.  If the period of interference fringes is 
comparable to the speckle size visibility of the 
interference pattern vanishes (see Ref. 10).   

 

 
 

a   b 
 

FIG.5. Lateral shear interferograms localized in the 
hologram plane reconstructed using a coherent (a) and 
polychromatic (b) light. 

 

The possibility of reconstructing focused image 
hologram recorded using polychromatic (white) light 
using an off-axis reference wave is well known (see 
Ref. 11).  This is due to a constant size of the image 
localized in the hologram plane independent of 
wavelength.  As a result, a spectral colored image is 
observed in the hologram plane.  If in the case of a 
double-exposure hologram of a focused image 

interference pattern is localized in the hologram plane 
interference fringes observed are also spectral colored .   

The lateral shear interferogram observed in a white 
light (Fig. 5b) is a system of achromatic interference 
fringes, because no dispersion occurs in this case, the 
dispersion being caused by the use of an off-axis 
reference wave when recording a hologram of a focused 
image.  The speckle-structure in the observation plane 
is not observed.  Hence, when a double-exposure Gabor 
hologram of an amplitude screen focused image is 
reconstructed with a collimated polychromatic (white) 
light (see Fig. 2), diameter of the objective aperture p2 
can be decreased.   

As our experimental investigation have 
demonstrated, the interference pattern of the lateral 
shear interferogram type in the bands of infinite width 
with doubled sensitivity at a given shear value localizes 
only in the hologram plane if the double-exposure 
recording of the hologram is made at the amplitude 
screen is illuminated by a coherent quasi-spherical wave 
with the radius of curvature R > l1.  Then as in the 
case of illuminating by a coherent converging quasi-
spherical wave with R > l1 when spatial filtering of the 
diffraction field is made in the near zone (see Ref. 10) 
the interference pattern is localized in the Fourier 
plane.  This may be explained as follows. 

 

 
 

FIG.6. Lateral shear nterferograms in ($1) and (+1) 
diffraction orders.  The amplitude scattering screen is 
illuminated by a converging, with radius of curvature 
R > l1 (a) and diverging with R > l2, spherical waves.  

 

In all cases of reconstructing the double-exposure 
hologram with a small-aperture laser beam and if at the 
stage of the hologram recording the amplitude 
scattering screen is illuminated by a coherent quasi-
spherical wave with the radius of curvature R > l1 
typical interference pattern presented in Fig. 6a is 
recorded in the hologram extreme points located on the 
shear axis.  This pattern is typical in the following 
aspect.  The lateral shear interferograms obtained in  
($1) and (+1) orders of diffraction that characterize 
the combination of axial and off-axis wave aberrations 
of a lens under control always have more dense 
interference fringes in the pattern periphery that is in 
the area farther from the point where regular 
component of the hologram transmittance is focused.  
In the case when the amplitude scatterer is illuminated 
by a coherent converging or diverging quasi-spherical 
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wave of curvature radius R > l1 the lateral shear 
interferograms in ($1) and (+1) diffraction orders 
shown in Fig. 6 in the vicinity of the point where the 
hologram transmittance regular component is focused 
always have interference fringes spaced more closely.  
This clearly demonstrates that in the former case 
normals to the wave fronts of ($1) and (+1) diffraction 
orders diverge, whereas in second case they converge 
thus providing the interference  pattern localization in 
the hologram plane with an enhanced sensitivity.   

It should be pointed out that when a double-
exposure Gabor hologram of the amplitude scattering 
screen focused image is recorded using a telescope 
system of Keppler type the lateral shear interferogram 
formed at the stage of the hologram reconstruction 
has doubled sensitivity at a given shear value (see 
Ref. 12).  In the case when spatial filtering of 
diffraction field is performed in the near zone the 
pattern is localized in the Fourier plane.  This is 
typical for the cases when the field distribution in the 
image plane is formed as a result of two successive 
Fourier transformations of the input distribution in 
the subject plane. 

Thus, the results of the experiments performed 
showed that, as in Ref. 1, when the amplitude 
scattering screen is irradiated by a coherent converging 
or diverging quasi-spherical wave with radius of 
curvature R > l1 single-exposure recording of its 
focused image by Gabor method is accompanied, at the 
stage of the hologram reconstruction, by appearance of 
the interference pattern in bands of equal thickness 
which characterizes spherical aberration of an object 
under control with a doubled sensitivity. 

As in Ref. 1, when recording a double-exposure 
hologram at the stage of its reconstruction with a 
small-aperture laser beam at the point located on the 
optical axis in the Fourier plane the interference 
 

pattern describing spherical aberration of the object 
and resulting from a combination of the interference 
pattern in the bands of equal thickness and lateral 
shear interferogram.  In contrast to Ref. 1 the lateral 
shear interference pattern with a doubled sensitivity 
at a given shear value is localized in the hologram 
plane what allow us to reconstruct it using white 
light and to record achromatic interference fringes. 
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