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We have derived analytical relationships that enable one to make a transition 

from the Haar and Walsh bases in the expansions of the optical phase to a 

statistically optimal Karhunen$Loeve$Obukhov basis.  The former bases are most 

convenient for use in compensating devices of the adaptive optics systems while the 

latter one is most correct and comprehensive when formulating criteria of an 

adaptive optics system closeness to an ideal diffraction-limited system.  The 

relationships derived, if used in parallel with the algorithms of fast Walsh and 

Haar transforms, enable one to approach real time operation mode when 

reconstructing the wave fronts.  Besides, the transform matrix obtained enables one 

to allow for the effect of the turbulence outer scale. 
 
For making a wave front modal compensation in 

adaptive optics systems (AOS) a wave phase is 
represented as a series expansion over a given system of 
basis functions.1-3  Basic criterion for choosing wave 
front forming devices in the given basis is simplicity of 
the compensating device.2,4  In this case it is preferable 
that the wave front correction is performed in the basis 
of discrete Walsh functions and Haar wavelets which 
are characterized by simplicity of engineering 
realization and belong to a type of fast transforms.  
These functions take only two values + 1 and $ 1. As a 
result it is possible to avoid multiplication when 
algorithms are realized in a computer (see Fig. 1). 

In this connection the execution time of the 
discrete Walsh transform is less than this time for the 
fast Fourier transform by a factor of 10 for the same 
data array.5  The Haar wavelet transform is faster than 
the Walsh transform.  Wavelets are a local basis which 
is stable relative to noise in the initial data, i.e. it 
improves the signal-to-noise ratio and allows local 
singularities such as a pulse, step, and power 
peculiarity to be extracted.6$8  Such properties of the 
basis allow one to approach the real time operation 
mode, to reduce the time of estimation the phase 
expansion coefficients limited by the speed of adaptive 
circuit response, and to numerically simulate distortions 
of the wave front having a complex topology. 

To estimate the potential efficiency of modal 
correctors the statistical indices characterizing the degree 
of AOS closeness to an ideal diffraction-limited system 
are used.  These indices are the Strehl ratio, distribution 
of the expansion coefficients variance over the aperture, 
structure function of adaptive optics systems aberrations, 
etc.9,10  Estimation of these important values is 

essentially simplified, if the phase S(ρ) is represented as a 
universal expansion over the Karhunen-Loeve-Obukhov 
(KLO) functions which agree with the turbulent medium 
of wave propagation 
 

S(ρ) = ∑
k=0

 N

 
 

 
“k ψk(ρ).  (1) 

 

In accordance with the Karhunen-Loeve-Obukhov 
theorem the minimum in the norm of error of 
representing a random function within an aperture with 
the pupil function W(ρ) is achieved when using N 
eigenfunctions corresponding to N largest eigenvalues 
of the integral operator whose kernel is the phase 
correlation function.11,12  The task of seeking such 
eigenfunctions ψk reduces to solution of the Fredholm 
integral equation of the second kind 
 

ψk(ρ) λk = 
⌡
⌠ 

 
W(ρ) Bs(ρ, ρ′) ψk(ρ′) d2ρ′ , (2) 

 

where Bs(ρ, ρ′) = < S(ρ), S(ρ′) > is the phase 
correlation function, ψk(ρ), λk are the eigenfunctions 
and eigenvalues of the integral equation (2), 
 

W(ρ) = 

⎩
⎨
⎧ 1, ρ  ≤ R,

0, ρ  > R
 

 

is the pupil function. 
 

Note, that the expansion (1) is the most 
informative.  Coefficients of the series expansion (1) do 
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not correlate and that simplifies using of  
the expansion results and their analysis.  The variance 
of the expansion coefficients in this series is  
minimal as compared to any other expansion.  
However, practical implementation of this expansion in 

an adaptive corrector of an AOS is rather  
difficult.  Therefore the problem of seeking a relation 
between the optimal Karhunen-Loeve-Obukhov 
expansion and the Walsh or Haar functions is 
expedient. 

 
 

FIG. 1. View of the first eight Walsh and Haar functions of a single coordinate:  a $ Walsh functions Wal(x),  
b $ Haar functions H(x). 
 

Let us find the transition matrix relating the 
coefficients of the KLO basis expansion with the 
coefficients of the Walsh or Haar bases.  The problem 
of deriving a relation between the KLO expansion and 
Walsh and Haar functions is identical to the problem of 
expanding the kernel of the integral equation (2) 
determining the KLO functions in the Walsh and Haar 
bases.  The coefficients of the kernel expansion make up 
 

the Gram matrix, its eigenvectors being the transition 
matrix sought and the eigenvalues are the variance of 
expansion coefficients. 

To determine the transition matrix for a round 
aperture we represent the Walsh functions Wal(ρ) as a 
product of Walsh functions of each coordinate 
 

Walnm(ρ) = Waln(ρ) Walm(θ), 
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FIG. 2. Spatial form of the Walsh functions Walnm(ρ), n = 0,1, m = 0,3 . 

 

where ρ = {x, y} = (ρ, θ).  The spatial view of these 
functions is presented in Fig. 2.  The Haar functions 
H(ρ) can be represented in the same way 
 

Hnm(ρ) = Hn(ρ) Hm(θ). 

Normally the mean wave phase is inessential in 
the majority of adaptive optics problems, therefore 
we omit the expansion term characterizing the phase 
averaged over the aperture.1$3 Taking this into 
account the wave front distortion within the aperture 
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may be presented in the form 
 

S(ρ) = ϕ(ρ) $ ϕav , (3) 
 

where 
 

ϕav = ⌡⌠
 

 
W(ρ) ϕ(ρ) d2ρ  (4) 

 

is the phase averaged over the aperture. 
By taking the relation (4) into account the 

correlation function 
 

Bs(ρ, ρ′) = < S(ρ) S(ρ′) > = < (ϕ(ρ) $ ϕav) (ϕ(ρ′) $ ϕav) > 
 

can be presented as the phase structure function  
D(ρ $ ρ′), Ref. 9 
 

Bs( ρ $ ρ′ ) = − 

1

2
 D(ρ $ ρ′) +  

+ 
1

2
 ⌡⌠

 

 
W(ρ) D(ρ $ ρ′) d2ρ + 

+ 

1

2
 ⌡⌠

 

 
W(ρ′) D(ρ $ ρ′) d2ρ′ $  

$ 
1

2
 ⌡⌠

 

 
d2ρ⌡⌠

 

 
d2ρ′ W(ρ) W(ρ′) D(ρ $ ρ′) . (5) 

 

We will find a solution of the equation (2) in a 
factorized form 
 

ψ(ρ) = R(ρ) Θ(θ) . (6) 
 

First of all we determine a form of the azimuthal 
function Θ(θ).  Note, that the function Θ(θ) must be 
continuous and periodical function of the angle θ with 
the period 2π.  By substituting the solution (6) into 
equation (2) we obtain  
 

⌡⌠
0

2π

 

 ⌡⌠
0

R

 
 

 
W(ρ) Bs(ρ, θ, ρ′, θ′) R(ρ) Θ(θ) ρ dρ dθ = 

= λ R(ρ) Θ(θ) . (7) 
 

Let us change the variables ζ = θ′ $ θ, dζ = dθ, 
θ′ = ζ + θ 
 

⌡⌠
0

2π

 

 ⌡⌠
0

R

 
 

 
W(ρ) Bs(ρ, ρ′, ζ) R(ρ′) Θ(ζ + θ) ρ dρ dζ = 

= λR(ρ) Θ(θ) . (8) 
 

From equation (8) it follows that Θ(ζ + θ) = 
= Θ(ζ) Θ(θ) due to continuity, periodicity, and 
uniqueness of the solution.  The general solution of this 
 

equation with the period 2π is well known and has the 
form of exp (ilθ).  Hence, the function Θ(θ) is 
 

Θ(θ) = exp (ilθ) , (9) 
 

where l ∈ Z, i.e. l = 0, ± 1, ± 2,  ± 3,... .   
By expanding Θ(θ) into a series over the functions 

Wal(θ) and H(θ) or, what is the same, applying the 
fast Walsh and Haar transformations we determine the 
azimuthal transition matrix. 

To determine the radial transition matrix we have 
to substitute the expression (9) into (8) and after 
certain operations obtain the homogeneous integral 
Fredholm equation of the second kind 
 

⌡⌠
0

R

 
 

 
ρ dρW(ρ) R(ρ) ⌡⌠

0

2π

 

 
 dζ exp (ilζ) Bs(ρ, ρ′, ζ) = 

= λR(ρ) . (10) 
 

The task of seeking a relation between the basis 
R(ρ) with the Walsh and Haar bases is equivalent to a 
problem of expanding the kernel of the equation (10) 
into a series over the Walsh and Haar functions.  In 
this case it is necessary to determine an explicit form of 
the kernel in equation (10).  Let us introduce the 
designation 
 

Ml(ρ, ρ′) = ⌡⌠
0

2π

 

 
dζ exp (ilζ) Bs(ρ, ρ′, ζ) . (11) 

 

By substituting the explicit form of Bs(ρ, ρ′, ζ) 
we have (11) 
 

Ml(ρ, ρ′) = − 
1
2
 ⌡⌠
0

2π

 

 
dζ exp (ilζ) D(ρ $ ρ′) +  

 + 
1
2π

 ⌡⌠
 

 
d2ρ ⌡⌠

0

2π

 

 
dζ exp (ilζ) W(ρ) D(ρ $ ρ′) + 

 + 
1
2π

 ⌡⌠
 

 
d2ρ′ ⌡⌠

0

2π

 

 
dζ exp (ilζ) W(ρ′) D(ρ $ ρ′) $ 

$ 
1

4π2⌡⌠

0

2π
 

 

dζ exp(ilζ)
⌡⌠

 

 

d2ρ
⌡⌠

 

 

d2ρ′ W(ρ) W(ρ′)D(ρ $ ρ′) . 

 

The view of the kernel for l = ± 1, ± 2,  ± 3,..., i.e. for 
l ≠ 0, is simplified because three last terms turn out to 
be zero due to the orthogonality of the functions 
exp (ilθ).  Hence, the kernel takes the form 
 

Ml(ρ, ρ′) = − 
1
2
 ⌡⌠
0

2π

 

 
dζ exp (ilζ) D(ρ $ ρ′) . 
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For Kolmogorov spectrum of the turbulence1,2 the 
structure function has the form 
 

D(ρ) = 
6.88

r5/3
0

 ρ5/3 ,  

 

where r0 is the Fried radius.  Let us now apply the 
Fourier-Bessel transform H0 to the function D(ρ) 
 

D(ρ) = ⌡⌠
0

∞

 
 

 
D(i)J0(iρ)i di,      D(i) = 

6.88

r5/3
0

 
1

 i11/3 
, 

 

where J0(x) is the zeroth order Bessel function of the 
first kind.  Taking into account the shift theorem, 
convolution theorem, and the fact that the Fourier-
Bessel transform for the pupil function has the form 
 

W(ρ) 
H0

→ 
J1(iρ)

i
 R , 

 
for l ≠ 0 we obtain 
 

Ml(ρ, ρ′) = − 
6.88π

r5/3
0

 ⌡⌠
0

∞

 
 

 

Jl(iρ′)Jl(iρ)i di
i

11/3  . 

 

For l = 0 the form of the kernel becomes more 
complex and for the Kolmogorov model of turbulence 
we obtain 
 

M0(ρ, ρ′) = − 
6.88π

r5/3
0

 ⌡⌠
0

∞

 
 

 

J0(iρ′)J0(iρ)i di
i

11/3  + 

+ 
6.88

r5/3
0

 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤1

R
 ⌡⌠
0

∞

 

 

J0(iρ)J1(iR) di
i

11/3  + 
1
R

 ⌡⌠
0

∞

 

 

J0(iρ′)J1(iR) di
i

11/3

 − 
 

− 
6.88π

r5/3
0

 ⌡⌠
0

∞

 
 

 

J2
1( iR) di
i

8/3  . 

 

An advantage of the kernel representation in this 
form is the possibility to introduce the outer scale of 
the atmospheric turbulence.  In this case it is sufficient 

to substitute (i2 + 1/L2
0 )

8/6 instead of i8/3 in the 

expressions under the integral sign, where L0 is the 
outer scale of turbulence. 

Let us expand Ml(ρ, ρ′) into a series over the 
Walsh functions Waln(ρ) 
 

ρ Ml(ρ, ρ′) = ∑
s

N

 
 

 ∑
p

N

 
 

 
A

l
ps Walp(ρ) Wals(ρ′) . 

 

Note, that the Walsh functions refer to the class of 
multiplicative systems and form the Abelian group 
where the addition operation ⊕ is determined as the 
summation to module 2 performed as a bit-by-bit 
summation without carrying the unit into the most 
significant bit Waln(ρ) Walm(ρ) = Waln ⊕ m(ρ), 
Refs. 5, 13. Using this property the expansion 
coefficients can be obtained 

 

1
N2 ⌡⌠

0

1

 
 

 ⌡⌠
0

1

 
 

 
ρ Ml(ρ, ρ′) Walp(ρ) Wals(ρ′) dρ dρ′ = A

l
ps .  

 (12) 
 

Thus obtained matrix is the Gram matrix.  By 
diagonalizing this Gram matrix we can obtain the 
expansion coefficients of the radial parts of the KLO 
functions in terms of Walsh functions.  Performing the 
operations analogous to those described above we can 
determine coefficients of R(ρ) expansion over the Haar 
wavelets.  The expansion coefficients of the radial 
function R(ρ) in the Haar basis can be determined in a 
different way by using a closed connection between the 
Walsh and Haar functions13,14 expressing in the 

transition matrix M
H-W

2n  

 

M
H$W

2n  = 

= ∏
r =1

n$1

 ∏
p =0

r$1

 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

I
 
2n$1$r ⊗ 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

I
 
2r ⊕ 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤I

 
2p ⊗ G2

2

I
 
2p ⊗ G3

2

 ⊕ I
 
2r $ 2p+1   , 

 

where It is the unit matrix of the dimension t × t;  

G
2
2 = [1 1], G3

2 = [1$1]; ⊗ is the sign of the Kronecher 

product, ⊕ is the sign of the Kronecher sum.  In this 
case it is sufficient to multiply the matrices (12) by 

M
H$W

2n  and obtain the transition matrix for R(ρ) and 

H(ρ), sought. 
Thus, in this paper we have analytically analyzed 

a possibility of performing a transition from the Haar 
and Walsh bases which allows a comprehensive and 
correct presentation of the potentialities of using the 
correcting AOS basis.  The relations obtained allow one 
to estimate the expansion coefficients and approach the 
real temporal resolution of random variations of 
turbulence owing to the use of algorithms of fast Walsh 
and Haar transforms.  Moreover, the Haar basis allows 
the distortions of the wave front with a complex 
topology to be simulated owing to its local properties.   

In the second part of the paper we plan to discuss 
a numerical realization of the theoretical approach 
described above and present some results of calculating 
transition matrices. 
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