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Within the framework of the perturbation theory developed on the basis 
of the Floquet–Lyapunov theorem the evolution operator of a two-level 
quantum system in a nonresonance monochromatic field is determined without 
the use of the rotating wave approximation.  It is shown that matrix elements 
of the evolution operator which are linear combinations of the quasi-energy 
state wave functions make it possible to follow up the connections with the 
initial level populations of the system unperturbed by the field, in contrast to 
quasi-energy wave functions. Using the evolution operator obtained the 
problem of a stationary absorption spectrum of a weak monochromatic field 
resonance to a two-level atom has been solved.  It is shown that, as a result of 
the action of a nonresonance perturbing field, the probe field absorption line 
strength decreases, and when recording the time-averaged signal at low 
frequencies of perturbing field the line profile contains narrow dips and peaks 
observable at microwave transitions. 

 

1. INTRODUCTION 

 

A periodic electromagnetic field, acting upon 
atoms and molecules changes the energy of their 
states, due to the dynamic Stark effect, and the 
spectra of resonance absorption and fluorescence vary 
qualitatively.  In sufficiently intense external fields 
the distortions of absorption spectrum of a probe 
field used to probe an atom transition can be sensible 
even for nonresonance external fields.  Such a 
situation may occur, for example, in microwave 
spectroscopy and in the method of laser Stark 
modulation spectroscopy,1,2 where low-frequency 
radiowave fields are used. 

Ñorrect method for describing similar situation is 
the use of the formalizm of quasi-energy states 
(QES)3–5 enabling one to calculate the spectrum of 
natural atom energies in the presence of a periodic 
field without the use of rotating wave approximation 
(RWA) inapplicable for low-frequency fields.  The 
primary goal of this paper is to determine the 
influence of intense nonresonance (including low-
frequency) electromagnetic field on the spectra of 
linear resonance absorption of monochromatic probe 
field of a dual-level quantum system based on a 
rigorous theory of perturbation for a nonresonance 
external field.6 

 

2. WAVE FUNCTION OF A TWO-LEVEL 

SYSTEM IN A NONRESONANCE PERIODIC 

FIELD 

 

Let us expand the wave function of a two-level 
system in a nonresonance periodic field over the 
eigenstate vectors 

 

Ψ(t) = am(t) ⎜m〉 + an(t) ⎜n〉 .  (2.1) 
 

By substituting (2.1) to the Schro
..

dinger equation 
 

i Ψ(t) = (Ĥ0 $ d̂ E cos ωt) Ψ(t) ;   � ≡ 1 ,  (2.2) 

 

where Ĥ0 is the Hamiltonian of an unperturbed 

system; d̂ is the operator of dipole moment; E and ω 
are the electric field intensity and the light wave 
frequency, we derive an equation for the probability 
amplitudes am

, a
n
 

 

a⋅m = $ i Em am + i G cos ωt an , 
 

a⋅ n = $ i En an + i G cos ωt am ,  (2.3) 
 

G = dmn E ,  dmn = 〈m⎢d̂⎢n〉, 
 
where Em, En are the level energies. 

Equation for the evolution operator (matriciant) 
of the system (2.3) is 
 

d
dt

 X̂(t) = K̂0 X̂(t) + G D̂(t) X̂(t) ;  (2.4) 
 

K̂0 ≡ $ i Ĥ0 = $ i ⎝
⎛

⎠
⎞Em 0

0 En
 ,   D̂(t) = i cos ωt ⎝

⎛
⎠
⎞0 1

1 0
,    
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X̂(0) = Î2 ≡  ⎝
⎛

⎠
⎞1 0

0 1
 . 

According to the Floquet–Lyapunov theorem6 
 

X̂(t, D) = F̂(t, G) eK
^
(G)t ,  F̂(t + 2π/ω) = F̂(t) .  (2.5) 

 

 
Substitution of (2.5) to (2.4) leads to the equation 

for F̂ and K̂0 

 
d
dt

 F̂(t, G)=K̂0 F̂(t, G)$F̂(t, G) K̂(G)+G D̂(t) F̂(t, G).(2.6) 

 
The perturbation theory relative small parameter G 
consists in the expansion 
 

F̂(t, G) = Î2 + G F̂1(t) + G2 F̂2(t) + ... ,  
 

K̂(G) = K̂0 + G K̂1 + G2 K̂2 + ... , (2.7) 
 

followed by seeking of the matrices F̂i, K̂i by 
substituting (2.7) in (2.6) that gives rise to a system 
of matrix equations 

 

dF̂1

dt
 = K̂0 F̂1 $ F̂1 K̂0 $ K̂1 + D̂ ,

dF̂2

dt
 = K̂0 F̂2 $ F̂2 K̂0 $ F̂1 K̂1 $ K̂2 + D̂ F̂1 ,

 

(2.8)

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  

 

By expanding the time periodic matrices F̂i(t),  

D̂(t) in a Fourier series 
 

F̂i(t) = ∑
m = $∞

∞
  F̂ i

(m)
 ei m ω�t

 ,   

 

 D̂(t) = D̂(1)
 ei  ω�t + D̂($1)

 e
$i  ω�t

 ,  (2.9) 
 

D̂(1) = D̂($1) = 
i

2
 ⎝
⎛

⎠
⎞0 1

1 0
 , 

 

as well as the Eq. (2.8), we find all matrices F̂
(m)
1  

from the first of transformed equations (2.8) for 

nonzero harmonics (m ≠ 0).  Further the matrix F(0)
1  

is determined from initial conditions (2.4).  
Substitution of the expansion (2.9) to the above 
conditions results in the expression 
 

F̂ i
(0) = $ ∑

m = $ i
m ≠ 0

i

   F̂ i
(m) .  (2.10) 

 

Then from the first transformed Eq. (2.8) for 

m = 0 we find the matrix K̂1.  Having determined  

F̂
(m)
1  for all m = –1, 0, 1 we come to the second 

equation (2.8), and the procedure is repeated for the 

second and consequent orders of the perturbation 
theory. 

As a result, correct to the second order of the 
perturbation theory of the field we obtain 

 

K̂(G) = $ i ⎝
⎛

⎠
⎞Em $ G2 k2 $G k1

$G k1 En + G2 k2
 ,  (2.11) 

 

k1 = 
ω0

2
 

ω0
2 $ ω2 ,   k2 = 

ω0 (ω0
2 + ω2)

2 (ω0
2 $ ω2)2 ,   ω0 ≡ Em $ En . 

 

F̂(t, G) = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 + 

1
2
 G2 f2 G f1

$ G f1
* 1 + 

1
2
 G2 f2

*
 , (2.12) 

 

 

fj = ∑
m = $ j

j

   f j
(m) ei m ω�t , j = 1, 2 , 

 

f 1
(±1) = 

1
2(ω0 ± ω)

 ,    f 1
(0) = $ 

ω0

ω0
2 $ ω2 ,     

 

f 1
(±2) = K 

1
4ω(ω0 K ω)

 , 

 

f 2
(±1) = 

ω0 

(ω0
2 $ ω2)(ω0 ± ω)

 ,    f 2
(0) = $ 

3 ω0
2 + ω2

2(ω0
2 $ ω2)2 . 

 

Denominators in Eqs. (2.11) and (2.12) contain the 
resonant factors (ω0 $ ω).  The necessary condition of 
the small values of terms of the expansion (2.7) 
imposing a limitation on the proximity of the 
frequency  to the first order resonance ω0 ≈ ω, is 

 

G <<  2⎜ω0 $ ω⎜ .  (2.13) 
 

Inversion of the matrix exponent exp[K̂(G)t] in 
Eq. (2.5) is performed with the use of Sylvester 
theorem6 
 

exp[K̂(G)t] = ⎝
⎛

⎠
⎞(1 $ c)em + c en $d(em $ en)

$d(em $ en) (1 $ c)en + c em
 ,  

   (2.14) 

c = G2 
ω0

2
 

(ω0
2 $ ω2)2 ,  d = G 

ω0

ω0
2 $ ω2 , 

em, n = exp[$i(Em, n ± Δ)t] ,   Δ = G2 
ω0

2(ω0
2 $ ω2)

 . 

 

Having multiplied, in Eq. (2.5), the matrices (2.12) 
and (2.14), we obtain the final solution of (2.4) 
correct to the second order of the perturbation theory 
of the field G 

X11 = ⎝
⎛

⎠
⎞1 + 

1
4
 G2 ϕe2  em + 

1
2

 G2 ϕe1 ϕo1 en ,     
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X12 = $ G ϕe1 em + 
1
2
 G ϕo1 en , 

(2.15) 

X21 = $ 
1
2
 G ϕo1

*  em + G ϕe1 en ,    

 

X22 = 
1
2
 G2 ϕe1 ϕo1

* em + ⎝
⎛

⎠
⎞1 + 

1
4
 G2 ϕe2

*  en , 

 

ϕe1 = 
ω0

ω0
2 $ ω2 ,   ϕo1 = 

e
$i  ω t 

ω0 $ ω + 
ei  ω t 

ω0 + ω ,  

 

ϕe2 = 
e
$2 i ω t

 
2ω(ω0 + ω)

 $ 
3 ω0

2 + ω2

(ω0
2 $ ω2)2 $ 

e
2 i ω t

 
2ω(ω0 $ ω)

 . 

 

The matrix X̂ (2.15) is a unitary matrix correct to G2 
and enables the transition from eigenstates |m〉, |n〉 of 
the unperturbed system to the interaction 
representation 
 

⎝
⎛

⎠
⎞⎜u〉

⎜l〉  = ⎝
⎛

⎠
⎞X11 X12

X21 X22
 ⎝
⎛

⎠
⎞⎜m〉

⎜n〉  ,  (2.16) 

 

where the states |u〉 and |l〉 correspond to the population 
of the states m and n at t = 0. 

Quasi-energies of the system are the factors Em + Δ 
and En $ Δ in the exponents em and en (2.14), (2.15).  
From Eqs. (2.16) and (2.15) it follows that the 
mathematically rigorous solutions for the states |u〉 and 
|l〉, having a directly seen relation to the initial 
populations of the system unperturbed by the field, are 
linear combinations of QES. 

 
3. SPECTRUM OF A PROBE FIELD 

ABSORPTION BY A TWO-LEVEL ATOM 

DISTURBED BY AN EXTERNAL 

NONRESONANCE FIELD 

 

To calculate the probe field absorption spectrum 
we use the equation for the medium density matrix in 
the model of relaxation constants.  For simplicity of 
the calculations all the constants are assumed to be 
equal and the rotating wave approximation is used for 
the probe field 
 

ρ̂
⋅
 + γ ρ̂ = [K̂0 + VD̂μ(t) + GD̂(t), ρ̂] + γ Q̂ , 

 

D̂μ = i ⎝
⎛

⎠
⎞0 em

eμ* 0  ,   Q̂ = 
⎝
⎛

⎠
⎞ρm

0 0

0 ρn
0  ,  (3.1) 

 

eμ = exp($ i ωμ t) ,   V = dmn Eμ/2 , 
 

where Eμ and ωμ are the amplitude and the frequency 

of the probe field; ρ0
m and ρ0

n are the equilibrium 
populations of the levels m and n in the absence of 
fields. 

Transition to the interaction representation (2.16) 
removes the explicit form of the disturbing field G 

from Eqs. (3.1), which after specific definition with 
the use of Eq. (2.15) takes the form 

 

ρ⋅  + 
⎝
⎛

⎠
⎞γ $ 

4 i V G ω0

ω0
2 $ ω2  cos δt  ρ =  

 

= i V n e$i δ t [1 $ G2 f(t)] + γn0 
G ω0

ω0
2 $ ω2 ,  (3.2) 

 

n⋅  + γ n = 4 V Re i e$i δ t ρ [1 $ G2 f *(t)] + 
 

+ γ n0 [1 $ G2 ϕ(t)] , 
 

f(t) = 
e$2 i ω t 

4ω(ω $ ω0)
 + 

3 ω0
2 + ω2

2(ω0
2 $ ω2)2 $ 

e2 i ω t 
4ω(ω0 + ω)

 + 

 

+ 
ω0

2

(ω0
2 $ ω2)2 e

2 i δ t, 

 

ϕ(t) = 
1

2(ω0
2 $ ω2)

 
⎝
⎜
⎛

⎠
⎟
⎞e

$2iωt
 + 2 

3 ω0
2 + ω2

ω0
2 $ ω2  + e

2iωt
 , 

 

where ρ = ρul is the off-diagonal element of the density 
matrix in ul-representation (2.16); n = ρll $ ρuu is the 
difference between populations disturbed by the field G 
of the states |u〉 and |l〉; δ = ωμ $ ω0 $ 2Δ is detuning of 
the probe field frequency from the transition resonance 
frequency disturbed by the field G system; the value Δ 

is determined in Eqs. (2.14), n0 = ρ0
n $ ρ0

m is the 
equilibrium difference in population of the levels (in 
the absence of the fields). 

Peculiarities of Eqs. (3.2) are the transfer of the 
result of perturbation by the field G to the time 
depending coefficients containing the oscillating 
exponents with the periods determined by the 
frequency ω and the detuning δ as well as the 
appearance of a continuous in  time “pumping” of the 
polarization, proportional to the first power of G (the 
latter term of the first equation (3.2)), and periodic in 
time Bloch-Siegert shear7 (the second term in brackets 
of the left-hand side of the first equation (3.2)) due to 
the interference of the fields V and G. Note that 
because of simplifying assumptions concerning the 
equality of all the system relaxation constants after the 
transfer to ul-representation the relaxation part remains 
invariant. It can be shown that inequality of relaxation 
constants results in their and the field G time 
dependence in ul-representation as well as in the 
appearance of cross-relaxation terms, proportional to 
differences in these constants, which additionally 
couple the equations for level populations and atom 
polarization. 

The action of the probe field, to which the 
absorption factor of test field is proportional, in the 
used representation of interaction is of the form 
 

P = 2 V Re ieμ* [X11 X22
*

 ρ + X21 X12
*

 ρ* $ X11 X12
*  n]. (3.4) 

 

Stationary solution (3.2) and (3.4) in weak fields V is 
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P = $ 
2n0 V2 γ
γ2 + δ2  

⎣
⎢
⎡

⎦
⎥
⎤1 $ 2 G2 

2ω0
2 + ω2

(ω0
2 $ ω2)2  $ 

$ n0 VG 
⎣
⎡

⎦
⎤2ω0 sin δt

ω0
2 $ ω2  $ 

sin(δ + ω)t
ω0 $ ω  $ 

sin(δ $ ω)t
ω0 + ω  $ 

$ 2 n0 V2
 G2 Re ∑

k = $2

2

   ⎝
⎛

⎠
⎞Ak + 

Bk

γ + i δ e2 i δ t  e
 i k ω t ,  (3.5) 

A0 = 0 ,    A±1 = 
1

γ $ iδ 
ω0

(ω0
2 $ ω2)(ω0 K ω)

 ,  

A±2 = K 
1

γ $ iδ 
1

4ω(ω0 K ω)
 ± 

1
γ $ i(δ K 2ω)

 
1

4ω(ω0 ± ω)
 $ 

$ 
γ

(γ ± 2iω) [γ $ i(δ K 2ω)]
 

1

2(ω0
2 $ ω2)

 , 

B0 = 
3 ω0

2 $ ω2

2(ω0
2 $ ω2)2 ,    B±1 = $(γ $ iδ) A±1 , 

B±2 = 
1

4(ω0 K ω)2 . 

 

Note that the constant component of the 
absorption coefficient (the first line (3.5)) tends to 
uniformly decrease with the probe field frequency, 
that can be interpreted as  an additional broadening 
of the transition levels due to their spectral 
“blurring” owing to the dynamic Stark effect 
appearing in the second order perturbation theory in 
G.  The rate of the decrease is determined by the 
external field intensity and the values of ω0, |ω0 $ ω|.  
The estimates show that such a decrease may be quite 
noticeable, though still being within the limits of the 
perturbation theory, for example, for transitions in 
the microwave region as well as for higher-frequency 
transitions (including optical ones) at |ω0 $ ω| << ω0. 

The interference component of the field energy, 
proportional to the product of amplitudes of 
disturbing and probe fields (second line in (3.5)) is 
due to the joint action of constant pumping of 
polarization and Bloch-Siegert dynamic shift (see the 
discussion of (3.2)) and oscillates at the frequencies 
|δ| and |δ ± ω|. The square in disturbing field 
amplitude addition to the absorption coefficient 
contains the frequencies ω, 2ω, |2δ ± ω| and |2δ ± 2ω|. 

Experimental recording of the absorption line 
contour of a probe field is coupled with the signal 
averaging over time or with separating out of any of 
the characteristic frequencies of oscillations P(t).  In 
the case of simple averaging over the interval  
[–T/2, T/2] for mean value of the field energy we 
have from Eq. (3.5) 

 

P
$
 = $ 

2n0 V2 γ
γ2 + δ2  

⎩
⎨
⎧
1 $ 2G2

 

2 ω0
2

 + ω2

(ω0
2

 $ ω2)2 + 

2G2

T
 

⎣
⎢
⎡ 3 ω0

2
 $ ω2

4(ω0
2

 $ ω2)2 × 

 

× 
sin Tδ

δ  $ 
ω0 sin T(δ + ω/2)

2(ω0
2 $ ω2)(ω0 $ ω)(δ + ω/2)

 $ 

$ 
ω0 sin T(δ $ ω/2)

2(ω2
0 $ ω2) (ω0 + ω) (δ $ ω/2)

 +  

+ 
⎭
⎬
⎫

⎦
⎤sin T(δ + ω)

8(ω0 $ ω)2(δ + ω)
 + 

sin T(δ $ ω)
8(ω0 + ω)2(δ $ ω)

  .  (3.6) 

Because of the averaging the interference 
component P does not contribute to P.  It is evident 
from Eq. (3.6) that at a relatively large values of T the 
line contour averaged over time contains narrow 
resonances whose maximum relative amplitude is 
determined by the value of the second-order terms of 
perturbation theory with respect to the external field.  
Resonance amplitudes at the frequency detuning δ = 0 
and δ = ± ω are positive and at δ = ± ω/2 they are 
negative.  In the case of ω << ω0 relative amplitude of 

the constant addition in P is Ic = $4G2/ω2
0.  Taking its 

modulus to be unity, we have for resonance amplitudes: 
I0 = 3/8; I±ω/2 = $1/4 and I±ω = 1/16.  For the quasi-

resonance ω0 $ ω ≡ Δ0 <<  ω0 we obtain  

Ic = $3/2(G2/Δ2
0) ⇒ $1; I0 = 1/6; I$ω/2 = $1.3, 

Iω/2 = $Δ0/(6ω0); I$ω = 1/6 and Iω = Δ2
0/(24ω2

0).  

Thus, in this case the resonances at positive frequency 
detuning δ = ω/2 and δ = ω have been essentially 
suppressed.   

At small frequencies ω ≤ γ the resonances are 
within the limits of the line contour P(δ).  If 
ω ≥ (4 $ 5) γ, then resonances manifest themselves as 
the line satellites whose amplitudes are discriminated 
additionally by the shape factor γ/(γ2 + δ2).  The 
latter fact hinders experimental recording of satellites 
in case of the quasi-resonance ω0 $ ω  << ω0 at high 
frequencies ω0.  Thus, the low-frequency transitions 
are optimal for observing the resonances. 

Among other important for the experiment 
peculiarities of the resonance absorption of a weak 
field in the presence of a strong nonresonance 
radiation it is also worth noting the above discussed 
effective decrease of the line intensity, by the factor 
1 $ Ic, and its shear to the lower frequencies $2Δ. 
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