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The experimental data are presented demonstrating that when laser 
radiation propagates through a snowfall, its intensity fluctuations are damped 
starting from a certain distance and (or) with the increase of a snowfall 
intensity.  The model of radiation fluctuations in precipitation proposed 
earlier by us was applied to interpret the experimental results.  According to 
this model, the multiply scattered field can be divided into the field multiply 
diffracted on particles’ contours and the refracted field.  Fluctuation damping 
factor in this case is defined as the intensity ratio of these fields.  The 
damping factor was computed using the Monte Carlo method. 

 
1. EXPERIMENTAL DATA 

 

As known,1,2 intensity fluctuations of radiation 
propagating in the turbulent atmosphere in their 
character can be subdivided into the following two 
regions: the region of weak fluctuations and the 
region of strong ones.  Typical for the first region are 
short paths or small value of the structural constant 

C
2

n of the turbulent atmosphere in this case the 
scintillation index 
 

β
2
 = (〈I

2
〉 – 〈I〉

2
)/〈I〉

2  (1) 
 
increases steadily with increasing either the path length 

L or the parameter C
2

n.  Here I is the radiation 

intensity and the angular brackets <...> denote 
statistical averaging.  Otherwise, in the region of 

strong fluctuations, when L → ∞ and/or C
2

n → ∞, the 
scintillation index tends to β → 1, i.e. saturation of the 
intensity fluctuations takes place. 

If there is precipitation in the atmosphere, then 
intensity fluctuations show different regularities.  
Thus, Fig. 1 demonstrates the dependence of the 
scintillation index in snowfall on the snowfall optical 
depth τ, obtained by us.  As a radiation source, we 
used a He-Ne laser with the output beam diameter of 
3 mm and angular divergence 2γ = 5⋅10–4 rad.  The 
photoreceiver with the receiving area of 0.1 or 0.3 mm 
was placed on the beam axis.  The path length varied 
from 37 to 1936 m. 

 
FIG. 1. Scintillation index versus the snowfall optical depth.  Snowfall particles mean diameter 1–3 mm; 
receiver diameter: 0.1 or 0.3 mm (°), 0.3 or 0.5 mm (+). 
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As seen, in this case intensity fluctuations can be 
subdivided into three regions. The first region is the 
region of weak fluctuations, where the scintillation 
index increases steadily with increasing either the 
path length L or the precipitation intensity. Then, 
with increasing path length, the region of fluctuation 
saturation manifests itself. As was shown in Refs. 3 
and 4, here, in contrast to the case of purely 
turbulent atmosphere, the scintillation index 
saturates now not at the level of unity, but at some 
random value, which is mainly determined by the 
average size of precipitation particles.  And then, 
with further increase in either path length or the 
precipitation intensity, the scintillation index starts 
to decrease.5 We call this region, having no analogs 
with the case when radiation propagates in the 
turbulent atmosphere, the region of fluctuation 
damping. 

 
2. MODEL OF FLUCTUATIONS WHEN 

RADIATION PROPAGATES IN PRECIPITATION 

 
The theoretical calculations of the scintillation 

index at wave propagation in randomly inhomogeneous 
media is rather a cumbersome mathematical problem, 
because it requires seeking the fourth momentum of a 
field.  By now such calculations are done only for the 
case of purely turbulent atmosphere.  That is why in 
Refs. 3 and 4, when interpreting intensity fluctuations 
in the region of fluctuation saturation, we used a 
simplified physical model, that yielded sufficiently 
good general agreement with the experimental data.  In 
this paper we use the same model for interpreting 
fluctuations in the region of their damping. 

The aforementioned model of fluctuations is based 
on splitting the field, scattered by a precipitation 
particle, into two qualitatively different components: 

 

E = E∂ + En. (2) 
 

Here, the first component E∂ by definition is a 
field diffracted on the particle contour.  In the wave 
zone, i.e., at distances r >> s (where 
 

s = kd
2
,  (3) 

 

k = 2π/λ, λ is the wavelength and d is the particle 
diameter), the field E∂ is a diverging spherical wave, 
concentrated in small scattering angle θ = λ/d.  At 
a distance r ≈ s from a particle the field E∂ is the 
result of Fresnel diffraction on a particle contour.  
And, finally, in the near zone r << s this field is 
localized behind the particle, resulting in the 
geometrical shadow.  That is why the field E∂ can be 
called, depending on the situation considered, as 
diffracted, small-angle, or shadow-forming field. 

Let us now consider another field component, 
En.  Since in the particle near zone the scattered field 
is described by the geometric optics, the field in the 
near zone is the result of ray reflection and refraction 
inside the particle.  In the wave zone the field En 

also transforms into a diverging spherical wave, but 
this field will be sufficiently large at practically any 
scattering angle.  Therefore the field En can be called 
either refracted or quasi-isotropic field. 

The superposition (2) is valid also for the field 
scattered by an ensemble of precipitation particles.  
Here the field En is the result of multiple diffraction 
at a particles’ contours if particles are in the wave 
zone of each other.  If particles are in the far zone of 

each other, then, in accordance with the value of E∂ 

field behind a particle, the multiply scattered field E∂ 
is the result of multiple mutual shading of particles.  
Correspondingly, the field En in the scattering 
medium is the result of multiple ray reflection and 
refraction in particles, if particles are in the near 
zone of each other. 

It is clear that at a large distance from particles 
the field En forms the quasi-isotropically diverging 

spherical wave, while the field E∂ at such distances 
manifests itself as a small-angle peak. 

Let us consider now the intensity fluctuations of 
the multiply scattered field described by the 
superposition (2).  It is known1,2 that superposition 
of a large number of isotropically scattered waves is 
the Gaussian field with zero mean and scintillation 
index equal to unity.  The correlation length of 
intensity of such a field inside the scattering medium 
is small, it is of the order of wavelength.  The same 
regularities also show themselves in the quasi-
isotropic multiply scattered field En, which can be 
approximately presented as a superposition of waves, 
isotropically diverging from every particle.  The 
correlation length of intensity of En field will be thus 
of the order of wavelength, and such fluctuations 
cannot be detected in common measuring schemes. 

As a result, the proposed model of fluctuations 

assumes that in superposition (2) the field E∂ is 
fluctuating in the scattering medium, while the field 
En is nonfluctuating. 

Let us consider the fluctuations of E∂ field.  If 
all particles of a scattered medium are at a distance 

r >> s from the radiation receiver, then the field E∂ at 
the receiver also is the superposition of diverging 
spherical waves.  But, in contrast to the field En, 
these spherical waves are strongly anisotropic, i.e. 
concentrated within small scattering angles.  

Although the field E∂ in this case are Gaussian as 
before and its scintillation index is equal to unity, 
the intensity correlation length increases here, that 
makes fluctuations much better observable in the 
experiment.  According to Ref. 6, the intensity 
correlation length can be estimated here as ρ ≈ d/τ at 
τ > 1 and ρ ≈ d at τ < 1, where τ is the medium 
optical depth. 

Note that just the superposition of strongly 
anisotropic spherical waves results in superposition of 
the scintillation index at the level of unity in the 
purely turbulent atmosphere. 

Really, inhomogeneities of the refractive index 
of a turbulent atmosphere, taking place in the near 
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zone of radiation receiver, do not affect intensity 
fluctuations, because they are equivalent to phase 
screens.  Thus the intensity fluctuations are formed 
by scattered spherical waves coming from far 
inhomogeneities.  Just these waves form the Gaussian 
field at a radiation receiver. 

The opposite situation takes place in the case of 
precipitation particles.  Here particles from the layer 
at r < s adjacent to the receiver act as amplitude 
screens, that in fact corresponds to multiple 
shadowing of radiation receiver and particles by other 
particles.  Thus the effects from particles from the far 
layer r >> s and that adjacent to the radiation 
receiver are different.  According to Refs. 3, 4, and 6 
the particles from the adjacent layer result in non-
Gaussian statistics, where the blinking index grows 
infinitely with increasing τ and where the intensity 
correlation length is of the order of d.  As a result, 
the intensity fluctuations observed under radiation 
propagation in precipitation are determined by the 

field E∂ and are mainly caused by particles from the 
layer adjacent to the radiation receiver. 

Let us apply the above ideas to interpretation of 
experimental results in the region of fluctuation 
damping.  To this end, we now turn to square field 
parameters, namely, to the radiation intensity I(r, n), 
where n is the direction of photon motion at a given 
point r of space.  According to Ref. 6, the 

interference between fields E∂ and En can be 
neglected.  Then the radiation intensity also can be 

separated into the fluctuating part I∂ and 
nonfluctuating one In, each of which is formed by the 
corresponding components of superposition (2) 

I(r, n) = I∂(r, n) + In(r, n). (4) 

In real measurements the observable value is 
usually some integral of the radiation intensity, not 
the radiation intensity itself.  Let us call this integral 
as the measured signal 

S = ⌡⌠ 
 
I(r, n) A(r, n) dr dn,  (5) 

where A is some instrumental function.  Then any 
measured signal will be separated into the fluctuating 
and nonfluctuating parts, determined respectively by 

the radiation intensities I∂ and In.  Let the 
scintillation index of the signal resulting from the 

intensity I∂ be equal 

β
2

∂ = (〈S
2

∂〉 – 〈S∂〉
2
)/〈S

2

∂〉 .  (6) 

Then the scintillation index of the whole signal 
will be lower at the cost of nonfluctuating part 
resulting from the radiation intensity In 

β
2
 = β

2

∂ [1/(1 + Sn/〈S∂〉)
2
] ≡ β

2

∂ K. (7) 

Just the equation (7) is final expression for the 
scintillation index of signals measured in 
precipitation.  Within the considered model of 

intensity fluctuations the parameter β
2

∂ will be either 

steadily increasing or saturating function, while the 
factor K is the factor of fluctuation damping. 

 
3. NUMERICAL CALCULATION OF THE 

FACTOR OF FLUCTUATION DAMPING 

 
The factor K of fluctuation damping in Eq. (7) 

is expressed via the mean components of the radiation 

intensity 〈I∂(r, n)〉 and In(r, n).  As known, the 
statistically mean radiation intensity 〈I(r, n)〉 is 
described by the radiative transfer equation.  Note 
that the radiative transfer equation successfully 
describes both multiple rescattering of spherical 
waves, typical of the field En, and multiple particle 

shading of each other, characteristic of the field E∂.  

Really, for the intensity 〈I∂(r, n)〉 the radiative 
transfer radiation transforms into the small-angle 
approximation of the transfer equation.  But, as 
known, the small angle approximation of the 
radiative transfer equation can be applied to particles 
both in the near and wave zones of each other, 
therefore there is no need to distinguish between the 
particles by distance between them and by distance 
to the radiation receiver when solving the radiative 
transfer equation. 

The components 〈I∂(r, n)〉 and In(r, n) can easily 
be separated in numerical solution of the radiative 
transfer equation.  Let us substitute the scattering 
phase function into the radiative transfer equation as 
a superposition 

p = p∂ + pn. (8) 

Then that terms of iteration series, which are 

formed only by the scattering phase functions p∂, 

form the radiation intensity 〈I∂(r, n)〉.  The rest 
terms, into which the function pn enters at least one 
time, correspond to the radiation intensity In(r, n). 

In this paper we solved the radiative transfer 
equation using the Monte Carlo method.7 As a 
measured signal we took the irradiation at a beam axis 

S = ⌡⌠ 
 
I(r, n) N dn,  (9) 

where N is the normal to the area perpendicular to 
the optical axis.  Since the explicit form of the 
scattering phase function of snow particles is 
unknown, as a first approximation we took the 
simplest function 

pn(μ) = 1/8π, 

p∂(μ)=⎩
⎨
⎧[4π (1 – μ0)]

–1
  for μ = cosθ > μ0 = cosθ0,

0   for μ < μ0,
 (10) 

i.e., the quasi-isotropic part of the scattering phase 
function was taken isotropic, and the small-angle 
part was taken constant, different from zero in the 

diffraction cone with the angle θ∂ = λ/d about the 
optical axis, where d is the mean diameter of snow 
particles. 
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The calculations were made by the method of local 
estimates.  In this case the photon trajectories were 
divided in numerical simulations into two groups: 
trajectories with multiple small-angle scattering, giving 

the value 〈I∂(r, n)〉 and trajectories including at least 
one scattering event with the scattering phase function 
pn, giving the value In(r, n). 

 

 
FIG. 2. Fluctuation damping factor as a function of 
the optical depth. 

 
Figure 2 shows the calculational results for the 

following parameters, most close to the parameters 
taking place in our experiments, namely, the He-Ne-
laser beam with the divergence 2γ = 7⋅10–4 rad passes 
the 1-km long path.  The point radiation receiver was 
placed at the beam axis.  The radiation source was 
1 m from a snowfall, while the receiver was 2.5 m 
from snowfall, that corresponds to the parameters of 
the experimental set up.  In addition, this condition 
decreased the variance of calculated values.  The 
mean particle diameter was taken equal to 1 mm, 
i.e., θ0 = 6⋅10–4 rad. 

 

 

 
FIG. 3. Fluctuation damping factor as a function of 
the beam angular divergence, θ0 = 6⋅10–4 rad. 

 
As seen, under the given experimental conditions 

the fluctuation damping factor calculated by 
Eqs. (7)–(10) becomes significant starting from the 

optical depth τ = 25, and fluctuation are fully 
damped at τ = 32. 

Intensity fluctuations can also be damped by 
increasing the beam angular divergence. To 
numerically estimate this effect, we have calculated 
the factor K at the same parameters of the 
experimental setup and the snowfall optical depth 
τ = 10.  As is seen from Fig. 3, the factor K becomes 
significant, if the angular divergence of a laser beam 
used is increased by a factor of 50, while fluctuation 
disappear at the angular divergence increased by a 
factor of 350. 

 
4. DISCUSSION 

 
According to the experimental data shown in 

Fig. 1, the region of fluctuation damping begins at 
τ = 5, while our calculations give a five times greater 
value.  Such a big discrepancy between the 
experimental and calculated data requires both 
further refinement of the model of fluctuations and 
new experimental research. 

 

 

 
FIG. 4. Scintillation index at large receiver 
diameter: 0.8 (

°
) and 3.1 mm (Δ) 

 
Let us note possible causes of this discrepancy 

between the model and the experiment.  First, it is 
likely that the estimate of intensity correlation 
length ρ ≈ d, created by the layer adjacent to the 
receiver, is overestimated, since it does not take into 
account the degrees of spatial coherence of the field 
incident onto this layer.  In this case the fluctuation 
damping observed at Fig. 1 is caused not by 
increasing contribution from the component In(r, n), 
but simply by averaging effect of the receiving 
diaphragm.  The experimental data from Fig. 4 
obtained under the same conditions as the data from 
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Fig. 1 but at different diameters of receiving 
diaphragm favor this assumption. In this case the 
region of fluctuation damping manifested itself at 
lower values of the path optical depth. 

Second, in numerical calculations of the 
damping factor K we used the isotropic scattering 
phase function pn. If the real scattering phase 
function pn is noticeably asymmetric toward the 
forward hemisphere, then the calculated boundary 
of the region of fluctuation damping shifts toward 
smaller optical depths, that can make experimental 
and model results more close. 
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