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The sensitivity of a speckle interferometer to transversal or longitudinal displacements of a 

diffusely scattering plane surface is analyzed in the case that a negative lens is used to record a 
double-exposure specklogram. It is shown that the interferometer sensitivity to transversal 
displacements depends on the curvature radius of a spherical wave of coherent radiation illuminating 
the surface. The interferometer sensitivity to longitudinal displacements depends on the scale of the 
Fourier transform of the function characterizing the complex amplitude of reflection or transmission 
of the scatterer. Experimental results are in agreement with theoretical arguments. 

 

In the double-exposure recording of quasi-
Fourier and Fourier holograms with the use of a 
negative lens in order to control transversal 
displacements of a diffusely scattering surface,1 it 
was shown that the mechanism of formation of 
interference patterns in diffracting fields is caused by 
both tilts and homogeneous displacement of 
subjective speckles corresponding to the second 
exposure in the hologram plane relative to identical 
speckles of the first exposure. At the stage of 
hologram reconstruction, this circumstance leads to 
localization of interference patterns in two planes 
and, for metrological provision, to the necessity to 
perform the spatial filtering of the diffraction field. 
 If the longitudinal displacement of a scatterer is 
controlled, then in the hologram plane we observe, 
on the one hand, the inhomogeneous displacement of 
subjective speckles corresponding to the second 
exposure relative to identical speckles of the first 
exposure due to the difference in the scales of Fourier 
transforms of complex transmission (or reflection) 
amplitudes of a diffusely scattering plane surface in 
the hologram plane. On the other hand, the tilts of 
subjective second-exposure speckles relative to 
identical first-exposure speckles, varying along the 
radius from the optical axis, cause the localization of 
interference patterns in two planes. This calls for the 
necessity of the diffraction field spatial filtering at 
the stage of hologram reconstruction, for to form the 
interference pattern by two identical speckles of the 
both exposures. To do this, it is necessary to reveal 
features in the correlation of the intensity 
distribution of light scattered by the surface at the 
initial and displaced positions of the scatterer, based 
on distributions of the field complex amplitudes in 
the plane of the photographic plate.1 

In this paper, the formation of speckle 
interference patterns characterizing transversal or 
longitudinal displacements of a diffusely scattering 

plane surface is analyzed in order to determine the 
speckle interferometer sensitivity in the case that a 
negative lens is used at the stage of the double-
exposure recording. 

As shown in Fig. 1, a mat screen 1 in the plane 
(õ1, ó1) is illuminated by coherent radiation with the 
divergent wave front having the curvature radius R.  
 

 

Fig. 1. Diagram of the double-exposure hologram recording: 
matte screen 1; photographic plate-specklogram 2; negative 
lens L; aperture diaphragm ð. 
 

The radiation, diffusely scattered by the screen, 
passes through a thin negative lens L with the focal 
length f and then is recorded on a photographic 
plate 2 in the plane (õ3, ó3) for the first exposure 
time. Before the second exposure, the matte screen is 
displaced in the plane of its location, for example, in 
the direction to the axis õ by the distance à. 

As follows from Ref. 1, the distributions of the 
field complex amplitudes corresponding to the first 
and second exposures in the plane of the 
photographic plate (õ3, ó3) have the form  
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where ⊗  denotes the convolution; k is the wave 
number; r is the curvature radius of the spherical 
wave; L0 is the geometric parameter of the optical 
system satisfying the condition  

 0 1 21 1 1 1 ,L l f l= + +   

1 2,l l are the distances between the plates (õ1, ó1), 

(õ2, ó2), and (õ2, ó2), (õ3, ó3); (õ2, ó2) is the main 
plane of the negative lens L;  

 2

1 0 11 1 1l R l L l= + −  

is introduced for brevity; F(õ3, ó3) is the Fourier 
transform of the complex transmission amplitude 
t(õ1, ó1) of the matte screen being a random function 
of coordinates with the spatial frequencies L0x3/λl1l2 
and L0y3/λl1l2, λ is the wavelength of the coherent 
radiation used for the specklogram recording and 
reconstruction; P(õ3, ó3) is the Fourier transform of 
the pupil function p(õ2, ó2) [Ref. 2] of the negative 
lens L with the spatial frequencies x3/λl2 and y3/λl2. 

If the double-exposure recording of a 
specklogram is carried out on the linear part of the 
blackening curve of the photomaterial, then, taking 
into account that the constant component of 
transmission occupies a very small spatial area in the 
plane of recording 3 of the speckle interferogram, its 
complex transmission amplitude in Fig. 2 is 
determined as  
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where c.ñ. means complex conjugate. 
Let the field diffracting at the specklogram at 

the stage of hologram recording be bounded by the 
aperture diaphragm ð0 (see Fig. 2) of a thin positive 
lens L0 with the focal length f0. Then, based on 
Ref. 3, the distribution of the complex amplitude of 
the field in the plane (õ5, ó5) takes the form  
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where Ð0(õ5, ó5) is the Fourier transform of the pupil 
function ð0(õ4, ó4) [Ref. 2] of the lens L0 with the 

spatial frequencies x5/λf0 and y5/λf0; (x4, y4) is the 
principal plane of the positive lens. 
 

 
Fig. 2. Diagram of reconstruction of a specklogram 
characterizing a transversal displacement of the scatterer: 
specklogram 2; plane of recording 3 of the speckle 
interferogram; positive lens L0; aperture diaphragm ð0. 

After the substitution of Eq. (3) into Eq. (4) 
taking into account the parity of p(x2, y2), we obtain  
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It follows from Eq. (5) that within the area, 
determined by the width of the function  

 ( ) ( )2. 5 0 2 5 0 2. 5 0 2 5 0, , ,p l x f l y f p l x f l y f⊗  

the subjective speckle field with the speckle size 
determined by the P0(õ5, ó5) width takes place in the 
plane (õ5, ó5). 

Assume that when calculating the illumination 
distribution  

 ( ) ( ) ( )5 5 5 5 5 5, , ,I x y u x y u x y∗

=   

in the recording plane 3 (see Fig. 2), in order to 
exclude the speckle effect from the consideration, the 
averaging is performed over the area exceeding the 
domain of existence of a subjective speckle, but 

within which the phase 1 2 5 0 0kl l ax lL f  does not 

change. In addition, we believe that, as in the 
literature,4,5 the random function is delta-correlated, 
that is, taking into account the homogeneity of a 
random parameter  
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where the angular brackets denote the averaging; 

( ) ( )′ ′δ ξ − ξ δ η − η  is the Dirac delta function. Then 

the illumination distribution in the plane (õ5, ó5) 
takes the form  
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where υ is the visibility of the interference pattern. 
The real function  
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where ( )5 5,p x y′
 is the function equal to unity within 

overlapping areas ( ) ( )5 5 5 0 0 1 2 5, , ,p x y p x L f a l l y+  and 

equal to zero beyond this area. 
According to Eq. (6), interference fringes are 

located equidistantly on the axis õ in the recording 
plane 3 (see Fig. 2). Measuring the periods of these 
fringes, it is possible to determine the transversal 
displacement of the diffusely scattering plane surface. 
The period  

 ( )5 0 2 1 2 01x f l f l l RL a′Δ = λ + +   

for fixed values of λ, f, f0, l1, and l2 depends on the 
curvature radius of the divergent spherical wave of 
the coherent radiation used to illuminate the matte 
screen 1 (see Fig. 1) at the stage of the double-
exposure recording of a specklogram. In addition, the 
interferometer sensitivity increases with the decrease 
of R, which is explained by the increase of the 
homogeneous displacement of subjective second-
exposure speckles with respect to identical first-
exposure speckles in the specklogram plane. As an 
example, the dependence of the frequency of 
interference fringes on the curvature radius is shown 
in Fig. 3 for λ = 0.6328 µm, à = 25 µm, f = 220 mm, 
f0 = 50 mm, l1 

= 160 mm, l2 

= 160 mm. 
 

 
Fig. 3. Frequency of interference fringes for fixed λ, f, f0, 
l1, and l2 as a function of the curvature radius of a (1) 
divergent and (2) convergent spherical wave. 

As the sign of the curvature radius of the wave 
front in the plane (õ1, ó1) (see Fig. 1) alternates, the 
period of interference fringes  

 ( )5 0 2 1 2 01x f l f l l RL a′′Δ = λ + −   

increases, when R decreases in the range 

( )2

1 1 0 .l l L R− ≤ ≤∞  The condition ( )2

1 1 0R l l L′= −  

corresponds to the condition of formation of the field 
complex amplitude distribution corresponding to the 
Fourier transform of t(x1, y1) [Ref. 6] in Eq. (1) and 
to the absence of displacements of subjective second-
exposure speckles in the specklogram plane. Further 
decrease of R leads to the increase in the 
interferometer sensitivity due to the appearance and 
growth of the homogeneous displacement of 
subjective second-exposure speckles in the 
specklogram plane. 

Assume that at the stage of reconstruction of a 
double-exposure specklogram, characterizing the 
transversal displacement of the diffusely scattering 
plane surface, the specklogram displaces in the plane 
(õ3, ó3) (see Fig. 2) by õ03. Then the complex 
transmission amplitude of the specklogram is 
determined as  
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and the distribution of the field complex amplitude 
in the plane (õ5, ó5) takes the form  
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The above calculations for determination of the 
illumination distribution in the plane (õ5, ó5) yield 
the equation corresponding to Eq. (6). Consequently, 
in case of the speckle interference control over the 
transversal displacement of a diffusely scattering 
plane surface, “frozen” interference fringes are 
observed, and there is no need in the spatial filtering 
of the diffraction field for their recording. 

The comparison of the holographic 
interferometer,1 which records the interference 
pattern located in the Fourier plane, and the speckle 
interferometer under consideration shows that their 
sensitivity to the transversal displacement of a 
scatterer is identical. This is explained by the fact 
that the nature of the mechanism of formation of 
interference patterns consists in the homogeneous 
displacement of subjective second-exposure speckles 
in the hologram or specklogram plane. In the speckle 
interferometer regardless of the curvature radius of 
the spherical wave front in the plane (õ1, ó1) (see 
Fig. 1), the visibility of interference fringes is lower 
than unity. This is because in the holographic 
interferometer two images of the negative lens pupil 
are formed in the Fourier plane, and the interference 
pattern is formed within these two images 
overlapping. In the speckle interferometer, the image 
of the negative lens pupil is not formed in the 
Fourier plane, and the visibility of interference 
fringes is lower than unity due to the background 
radiation caused by the diffraction from 
nonoverlapping areas. However, for small transversal 
displacements of the scatterer, when L0f0a/l1l2 is 
much smaller than the pupil radius of the negative 
lens, the difference from unity is small. In addition, 
in the speckle interferometer as compared to the 
holographic interferometer,1 the threshold sensitivity 
to the transversal displacement of a diffusely 
scattering plane surface decreases due to the increase 
in the spatial length of the interference pattern in 
speckle interferometry.7 

It should be noted that the indirect studies (see, 
for example, Refs. 8 and 9) connected with formation 
of lateral-shear holographic interferograms with a 
negative lens used at the stage of recording, are 
accompanied by the formation of speckle interference 
patterns in the zero diffraction order. These  
patterns are formed, if the above dependence of the 
subjective second-exposure speckles displacement 
with respect to identical first-exposure speckles in 
the plane of the recording medium on the curvature 
radius of the wave front of the coherent radiation, 
used for illumination of a scatterer, is taken into 
account. 

Let the matte screen before the second  
exposure of the photographic plate 2 (see Fig. 1), is 
shifted along the axis z by the distance Δl << l1. 
Then, based on Ref. 1, the distribution of the field 
complex amplitude, corresponding to the second 
exposure in the plane of the photographic plate, is 
determined as  
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where ( )3 3,F x y′
 is the Fourier transform of ( )1 1,t x y  

with the spatial frequencies  
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According to Eq. (9), subjective second-
exposure speckles are shifted along the radius from 
the optical axis relative to identical first-exposure 
speckles due to the difference in the scales of Fourier 

transforms ( ) ( )3 3 3 3, ,  ,F x y F x y′  in Eqs. (1) and (9). 

This inhomogeneous speckle shift is independent of 
the spherical wave curvature radius of the coherent 
radiation used to illuminate the scatterer. The tilt  
of subjective speckles, varying along the radius  
from the optical axis and determined by the presence 

of the factor 2 2 2 2 2

0 3 3 1 2exp[ ( ) 2 ]ikL l x y l l− Δ +  in Eq. 9, is 

independent of the curvature radius as well. In its 
turn, due to the orientation character of subjective 
second-exposure speckles, there exists an additional 
variation of the tilt along the radius from the optical 
axis, which depends on the curvature radius of the 
wave front in the plane (õ1, ó1) (see Fig. 1) and is 
determined by the factor  under the integral of 
function convolutions in Eq. (9). In the general case, 
this circumstance leads to a significant decorrelation 
of the speckle structures of the both exposures. The 
decorrelation is absent, if the scatterer is illuminated 
by the coherent radiation with the divergent or 
convergent spherical wave with the curvature radius 

2

1 1 0/( )R l l L′ = −  [Ref. 1]. Therefore, to prove the 

possibility of formation of a high-contrast speckle 
interference pattern characterizing the longitudinal 
displacement of a diffusely scattering plane surface, 
we restrict our consideration to this value of R′  of 
the wave front. Then, neglecting the constant 
component of transmission, the distribution of the 

complex transmission amplitude ( )3 3,x y′τ  of the 

double-exposure specklogram (Fig. 4) takes the form  
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where spatial frequencies of the Fourier transform 

3 3( , )F x y′  correspond to  

 ( ) ( )0 3 1 2 0 3 1 21 , 1 .L x l l l R L y l l l R′ ′λ + Δ λ + Δ  

 

Fig. 4. Diagram of reconstruction of a specklogram 
characterizing the longitudinal displacement of a scatterer: 
specklogram 2; plane of recording 3 of speckle 
interferograms; positive lens L0; aperture diaphragm ð0. 

 
Assume that at the stage of specklogram 

reconstruction the specklogram-scattered radiation is 
recorded in the plane (õ5, ó5) with the use of a thin 
positive lens L0 with the focal length f0. Then the 
distribution of the complex amplitude in this plane in 
the Fresnel approximation is determined as  
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where (õ4, ó4) is the principal plane of the lens L0; 
l3, l4 are respectively the distances between the 
planes (õ3, ó3), (õ4, ó4) and (õ4, ó4), (õ5, ó5). 

After transformations well-known in the Fourier 
optics, we obtain  
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(12)

  

where ( )3 4l l lµ = +
� is the coefficient of scale 

transformation, which follows from the condition  

 ( ) ( )0 3 4 0 5 51 1 1 ; ,f l l l P x y′= + +
� ,  

being the Fourier transform of the pupil function 

( )0 4 4,p x y  of the lens L0 with the spatial frequencies 

5 4 5 4,x l y lλ λ . 

According to Eq. (12), the subjective speckle 
field is formed in the recording plane 3 (see Fig. 4). 
This field is characterized by the speckle size 

determined by the width of ( )0 5 5, ,P x y′  and the phase 

distribution of the divergent spherical wave with the 
curvature radius l4 is superimposed on this field. 

After substitution of Eq. (10) in Eq. (12), the 
distribution of the field complex amplitude in the 
plane (x5, y5) takes the form  
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As a result of the integral representation of the 
convolution operation with the function  

 2 2

3 5 5 4exp[ ( )/2 ]ik l x y ll− µ +
�   

in Eq. (13), we obtain 
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For l R′Δ <<  
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and taking into account that ( )3 3,x y′τ  is a real 

function: 
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Then, as a result of the integral representation of the 
convolution with the function  

 2 2 2

5 5exp[ ( )/2 ]ik x y lµ +
�   

in Eq. (14), the distribution of the complex amplitude 
of the field in the plane (õ5, ó5) takes the form 
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  (15)  

where ( ) ( )1 5 5 2 5 5, , ,F x y F x y  are respectively the 

Fourier transforms of the functions  

 ( )1 2 0 1 2 0, ,t l l lL l l lL− μξ − μη� �  ( )*
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with the spatial frequencies 2 2

5 5, ;x l y lμ λ μ λ� �  
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Since 

 2 2 2 2 2 2 2 2 2

0 5 5 1 2 5 5( ) ( ) 2 ,kL l x y l l k x y lμ Δ + << μ + �   

the function 2 2 2 2 2 2
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factored out of the integrals of convolution with the 
functions  
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into Eq. (15) because it varies slowly with the 
coordinate. In addition, we assume that the  
subjective speckle size in the recording plane 3  
(see Fig. 4) is at least an order of magnitude10 
smaller than the period of variation of 

2 2 2 2 2 2

0 5 5 1 21 exp[ ( ) ].ikL l x y l l+ μ Δ +  Then, taking into 

account the integral representation of the convolution 
operation in Eq. (15), the illumination distribution in 
the plane (x5, y5) is determined by the equation  
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If at the stage of the double-exposure recording 
of a specklogram the matte screen 1 (see Fig. 1) is 
illuminated by the coherent radiation with the 
convergent spherical wave of the curvature radius 

R′ 2

1 1 0( ),l l L= −  then the illumination distribution in 

the plane (õ5, ó5) is similar to Eq. (16), that is, 
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  (17)  

which differs only by the different illumination 
distribution in the subjective speckle structure. 

(16) 
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It follows from Eqs. (16) and (17) that in the 
plane (õ5, ó5) within the area determined by the width 
of the function  

 ( ) ( )2 5 2 5 2 5 2 5, , ,p l x l l y l p l x l l y lμ μ ⊗ μ μ� � � �   

the subjective speckle structure is modulated by 
fringes of equal tilt, namely, the system of concentric 
interference fringes, the measurement of whose radii 
in neighboring interference orders ensures the 
possibility of determining the longitudinal 
displacement of a diffusely scattering plane surface 
for the known values of  λ, μ, L0, l1, and l2. In 
addition, the speckle interferometer sensitivity to the 
longitudinal displacement of a scatterer depends on 
L0/l1l2, which determines (in the specklogram plane) 
the scale of the Fourier transform of the function 
characterizing the complex transmission amplitude of 
the matte screen 1 (see Fig. 1) in the plane (õ1, ó1). 
The sensitivity increases with the scale decrease of 
the Fourier transform F(õ3, ó3), because this 
circumstance leads to the increase of the 
inhomogeneous (varying along the radius from the 
optical axis) shift of subjective second-exposure 
speckles with respect to identical first-exposure 
speckles in the specklogram plane. The coefficient of 
scale transformation μ in Eqs. (16) and (17) is 
connected with the stage of specklogram 
reconstruction, and it does not determine the  speckle 
interferometer sensitivity to the scatterer longitudinal 
displacement. It can be seen from the following. 
From the above conditions:  

 l R′Δ �  è ( ) ( )2 2 2 2 2 2 2 2 2
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3 ,l l=

�  because for 3l l<
�  the distribution of the field 

complex amplitude in the plane of recording a 
speckle interferogram becomes closer to the 
distribution corresponding to the field distribution in 
the far diffraction zone, in which the coincidence of 
identical speckles of two exposures is absent as a 
necessary condition for formation of an interference 
pattern in diffusely scattered fields. In its turn, for 

3l l<
�  the distribution of the field complex 

amplitude in the plane of recording of a speckle 
interferogram becomes closer to the distribution 
corresponding to the field distribution in the plane of 
the specklogram image formation, in which identical 
speckles of two exposures do not coincide as well. 

Consequently, at 3l l=
�  the speckle interference 

pattern is maximally contrast, and the use of positive 
lenses L0 (see Fig. 4) with different focal lengths f0 
at the stage of specklogram reconstruction leads to 
different values of the coefficient μ. However, the 
product of the coefficient µ  and the difference 

between square radii of fringes in neighboring 
interference orders remains constant. 

Assume that, at the reconstruction stage of a 
double-exposure specklogram characterizing the 
longitudinal displacement of a diffusely scattering 
plane surface, the surface displaces in the plane 
(õ3, ó3) (see Fig. 4), for example, in the direction of 
the axis x by x03. Then the complex transmission 
amplitude of the specklogram is determined by the 
equation  
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In this case, following the above analysis of 
formation of the speckle interference pattern 
characterizing the longitudinal displacement of a 
scatterer, we obtain the distribution of the complex 
amplitude of the field in the plane (õ5, ó5) in the 
form  
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Based on this distribution and taking into account 
the integral representation of the convolution 

operation with 2 2 2

5 5exp[ ( ) 2 ]ik x y l− µ +
� , the 

illumination distribution in this plane takes the form  
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  (20) 

If at the stage of double-exposure recording of a 
specklogram the matte screen 1 (see Fig. 1) is 
illuminated by the coherent radiation  with the 
convergent spherical wave having the curvature 

radius R′ = 

2

1 1 0( ),l l L−  then the illumination 

distribution in the plane (õ5, ó5) is similar to 
Eq. (20), that is,  
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According to Eqs. (20) and (21), at the stage of 
specklogram reconstruction, if the specklogram shifts 
in its plane, interference fringes move (“living” 
speckle interference fringes) in the direction opposite 
to the direction of the specklogram shift. 

The comparison of application of the 
holographic interferometer1 and the speckle 
interferometer under consideration to the control for 
the longitudinal displacement of a plane surface, 
diffusely scattering light, indicates the absolutely 
different mechanisms of formation of interference 
patterns in these interferometers. In the holographic 
interferometer, the formation of interference fringes 
of equal tilt located both in the hologram plane and 
in the Fourier plane is caused by the varying (along 
the radius from the optical axis) tilt of subjective 
second-exposure speckles with respect to first-
exposure speckles. In this case, the spatial filtering of 
the diffraction field excludes the decorrelation of the 
speckle fields of the both exposures, which is caused 
by the inhomogeneous shift of subjective second-
exposure speckles in the hologram plane. In the 
speckle interferometer, the interference pattern is 
formed only due to the inhomogeneous shift of 
subjective second-exposure speckles with respect to 
identical first-exposure speckles in the specklogram 
plane. At the stage of specklogram reconstruction, 
the spatial filtering of the diffraction field is 
necessary, on the one hand, because interference 
fringes are located in the near diffraction zone and, 
on the other hand, in order to increase the area, 
within which the background radiation caused by the 
constant component of specklogram transmission is 
excluded, in the plane of recording of the speckle 
interferogram. 

In the experiment, double-exposure 
specklograms were recorded on Mikrat-VRL 
photographic plates with the use of the He–Ne laser 
radiation at λ = 0.6328 μm. The recorded radiation 
scattered by the matte screen propagated through the 
negative lens with the focal length f = 220 mm and 
the pupil diameter d = 11 mm, located at a distance 
l1 = 160 mm. The distance from the lens to the 
photographic plate was l2 = 160 mm. The diameter of 
the illuminated area of the matte screen was 40 mm. 
The experimental technique consisted in the 
comparison of recorded specklograms for the fixed 
transversal displacement of the scatterer 
à = (0.025 ± 0.002) mm. Different curvature radii of 
the divergent spherical wave of the radiation used to 
illuminate the matte screen were in a range 
150 mm ≤ R ≤ ∞ and 200 mm ≤ R ≤ ∞ for the 
convergent spherical wave. 

If the longitudinal displacements of the scatterer 
by Δl = (0.5 ± 0.002), (1 ± 0.002), and (2 ± 0.002) mm 
were controlled, the curvature radius R′  of the 
divergent or convergent spherical waves was 
252.6 mm. 

As an example, Figure 5 shows speckle 
interferograms characterizing the transversal 
displacement of the scatterer, recorded in the focal 
plane of the objective with f0 = 50 mm and the pupil 
diameter of 17 mm.  

At the stage of reconstruction (Fig. 5), the 
double-exposure specklogram was illuminated by a 

(21) 
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collimated beam of 50 mm in diameter. In all cases, 
as well as in the next, connected with the change of 
the value and sign of the curvature radius, the 
periods of interference fringes were measured (in 
addition, they can be determined from R 
measurements at known λ, a, f, l1, l2, and f0). 

 

 

 a  b  c 

Fig. 5. Speckle interference patterns characterizing the 
transversal displacement of the scatterer and located in the 
Fourier plane. At the stage of specklogram recording the 
matte screen was illuminated by the radiation with (a) 
plane wave, (b) divergent spherical wave (R = 260 mm), 
and (c) convergent spherical wave (R = 350 mm). 

 

The frequency of the speckle interference fringes 
obtained in this way corresponds to Fig. 3 accurate 
to the experimental error (10%). At the stage of 
reconstruction of double-exposure specklograms 
characterizing the transversal displacement of the 
diffusely scattering plane surface, there is no parallax 
of the interference fringes frozen in the Fourier 
plane, whose visibility is close to unity due to small 

value of 0 0 1 2af L l l as compared to the negative lens 

pupil radius. 
The speckle interference patterns shown in Fig. 6 

are formed upon the reconstruction of the double-
exposure specklograms, characterizing the longitudinal 
displacement of the scatterer, by the collimated beam 
in the near diffraction zone, when the spatial filtering 
of the diffraction field are carried out with the aid of 
the aperture diaphragm p0 (see Fig. 4) of 2 mm in 
diameter.  

 

 

 a b  c 

Fig. 6. Speckle interference patterns located in the near 
diffraction zone and characterizing the longitudinal 
displacement of the diffusely scattering plane surface by 
Δl = 0.5 (à), 1 (b), and 2 mm (c). 

 

Figure 6a corresponds to the case that the matte 
screen at the stage of specklogram recording is 
illuminated by the coherent radiation with the 

divergent spherical wave with the curvature radius R′ 
indicated above, while Figures 6b and c correspond 
to the illumination by the convergent spherical wave 
with the curvature radius R′. In addition, at the 
stage of specklogram reconstruction, the speckle 
interferograms shown in Fig. 6 were recorded with 
the objective having f0 = 50 mm, whose object plane 

was at a distance of 754 mm 3( ),l l+
�  while the 

distance l3 was equal to 377 mm. The measurements 
of the fringe radii in neighboring interference orders 
correspond to the scatterer displacements Δl = 0.5 mm 
(see Fig. 6a), 1 mm (see Fig. 6b), and 2 mm (see 

Fig. 6c) calculated as 2 2 2 2 2 2

1 2 0 2 12 ( ),l l l L r rΔ = λ μ −  where 

r1 and r2 are the fringe radii in neighboring orders of 
interference. This equation follows from Eqs. (16) 
and (17). The calculations were performed for the 
scale transformation coefficient μ = 14.1 accurate to 
the experimental error (10%). 

The speckle interference pattern in Fig. 7a 
characterizes the scatterer longitudinal displacement 
by Δl = 1 mm. This pattern was recorded, like in 
Fig. 6b, in the plane of its localization.  

 

 

 a  b  c 

Fig. 7. Illumination distributions recorded (a) in the plane 
of localization of the interference patter characterizing the 
longitudinal displacement of a diffusely scattering plane 
surface and (b, c) outside this plane. 

 

At l3 = 150 mm (Fig. 7b), the distribution of the 
field complex amplitude in the recording plane 3 (see 
Fig. 4) is closer to the distribution characteristic for 
the distribution in the far diffraction zone, where 
identical subjective speckles of both exposures do not 
coincide. At l3 = 600 mm (Fig. 7c), the distribution 
of the field complex amplitude in the recording plane 
is closer to the distribution characteristic of the 
distribution in the plane of formation of the 
specklogram image. In both cases, we see the 
complex character of the correlation degree of 
subjective speckle fields of two exposures, whose real 
part determines the visibility of the interference 
pattern lower than unity and the imaginary part 
leads to the illumination distribution in the recording 
plane other than the illumination distribution 
observed if the speckle interference pattern is 
recorded in the plane of its localization. 

Figure 8a (Figure 8b is presented for 
comparison) shows the speckle interferogram, 
characterizing the longitudinal displacement of the 
scatterer by Δl = 1 mm.  



V.G. Gusev Vol. 20,  No. 8 /August  2007/ Atmos. Oceanic Opt.   679 
 

 

It was recorded with the objective having the 
focal length f0 = 135 mm. The object plane at the 
recording of the speckle interferogram was at a 

distance of 754 mm 3( ),l l+
�  while l3 was equal to 

377 mm.  
In contrast to Fig. 8b, the diameter of the 

aperture diaphragm filtering the diffraction field is 
4 mm. In addition, the objective angle of view 
restricts the spatial length of the diffraction halo 
and, consequently, the speckle interference pattern. 
The measurements of the fringe radii in neighboring 
interference orders and the following calculation for 
μ = 4.58 used in the experiment correspond to 

Δl = 1 mm. Both for f0 = 50  and 135 mm, the 
product of the square coefficient μ by the difference 
of the square fringe radii in neighboring interference 
orders is the same. 

 

 

 à  á  

Fig. 8. Speckle interference patterns characterizing the 
longitudinal displacement of the diffusely scattering plane 
surface and recorded in its plane with the objective having 
the focal length f0 = 135 (à) and 50 mm (b). 

 

Figure 9 demonstrates the parallax of interference 
fringes. For this purpose, the speckle interference 
pattern was recorded in the plane of its localization 
with the objective with f0 = 135 mm (Fig. 9a). Then 
the specklogram was displaced in its plane by the 
distance, at which the interference pattern phase on 
the optical axis changed by π (Fig. 9b).  

 

 

 a  b  

Fig. 9. Speckle interference patterns demonstrating the 
phenomenon of parallax of interference fringes at unshifted 
(a) and shifted (b) positions of the specklogram at the stage 
of its reconstruction.  

The measured displacement of the specklogram, 
equal to 7.7 mm, corresponds to the value following 
from Eq. (21). 

Thus, the results of theoretical analysis and 
experimental investigations have shown that, at the 
double-exposure recording of a specklogram with the 
use of a negative lens, the speckle interferometer 
sensitivity to the transversal displacement of a 
diffusely scattering plane surface is the same as the 
sensitivity of the holographic interferometer, which 
records the interference pattern located in the Fourier 
plane. This is explained by the same mechanism of 
formation of interference patterns, connected with 
the homogeneous displacement of subjective second-
exposure speckles relative to identical first-exposure  
speckles in the hologram or specklogram plane.  

The difference is that frozen interference fringes 
with the visibility lower than unity are formed 
regardless of the curvature radius of the spherical 
wave of coherent radiation used to illuminate the 
scatterer at the stage of specklogram recording. 

In the case that the longitudinal displacement of 
the diffusely scattering plane surface is controlled, 
when the scatterer at the stage of double-exposure 
recording is illuminated by the coherent radiation 
with the spherical wave having a certain curvature 
radius, the mechanism of formation of the  
high-contrast speckle interference pattern in the 
speckle interferometer, in contrast to the holographic 
interferometer, is caused by only the inhomogeneous 
displacement of subjective second-exposure speckles 
relative to identical first-exposure speckles in the 
specklogram plane. The sensitivity of the speckle 
interferometer in this case depends only on the 
coefficient determining the scale of the Fourier 
transform of the complex transmission (or reflection) 
amplitude of the scatterer in the specklogram  
plane. 

 The inhomogeneous displacements of subjective 
second-exposure speckles relative to identical first-
exposure speckles in the specklogram plane lead, in 
their turn, to localization of the speckle interference 
pattern in the near diffraction zone. The position of 
the localization plane of the speckle interference 
pattern in the near diffraction zone depends both on 
the coefficient determining the scale of the Fourier 
transform of the complex transmission (or reflection) 
amplitude of the scatterer in the specklogram plane 
and on the curvature radius of the spherical wave of 
coherent radiation used to illuminate the diffusely 
scattering plane surface.  

In addition, the localization of the speckle 
interference pattern characterizing the longitudinal 
displacement of the scatterer in the near diffraction 
zone is accompanied by the phenomenon of parallax, 
that is, by the observation of “living” interference 
fringes. 
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