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Possibilities of developing high-efficiency and high-output second harmonic generators for 

mini TEA CO2 laser are studied. The system of shortened equations for interacting waves along with 
the two-dimensional heat conduction equation is solved. These equations describe second harmonic 
generation (SHG) taking into account the effect of thermal blooming. The efficiency of SHG with 
ZnGeP2, CdGeAs2, AgGaSe2, HgGaS4, Tl3AsSe3, and GaSe nonlinear crystals was estimated 
depending on the crystal length and optical quality. The following CO2 pump laser parameters were 
used: wavelength of 9.55 µm, pulse energy of 50 mJ, pulse duration from 1 to 100 ns, pulse 
repetition rate up to 1 kHz. The additional angular tuning of the crystals that maximizes SHG 
efficiency as well as the optimal crystal lengths providing for its maximum at a fixed pump pulse 
repetition rate were determined as well. The possibility of developing second harmonic generators 
with high (up to tens of watts) mean power has been proposed. 

 
 

Introduction 
 

Thanks to high performance characteristics and 
the possibilities of operating as a part of mobile and 
onboard systems, repetitively pulsed TEA CO2 lasers 
are widely used in lidars designed for laser monitoring 
of the atmosphere. Development of high-efficiency 
crystal frequency converters allows one not only to 
improve the parameters of existing lidar systems, but 
also to extend significantly the scope of solved 
problems. Prominent examples are second harmonic 
generators (SHG) of the 9-µm band that extend the 
list of gases monitored by ÑÎ2-laser based gas 
analyzers.1–3 

The aim of this work was to assess the feasibilities 
of achieving high-efficiency SHG of the radiation of 
repetitively pulsed TEA CO2 lasers suitable for 
operation as a part of mobile lidars.  

However, the choice of the best crystal even for 
this particular problem is not obvious. Important 
parameters determining, for example, the degree of 
development of the disturbing thermal processes 
(heat conductivity) and drift of interacting radiations 
(birefringence), are determined quite correctly by 
now. However, these are quite different for different 
crystals and therefore cause uncertainty. This follows 
from the Table of basic properties determining the 
frequency doubling efficiency for six nonlinear 
crystals that are now most promising for solution of 
the problem formulated above. Some of these data on 
the general physical properties of the crystals were 
borrowed from Ref. 4, and the measured values of 
the surface damage threshold were taken from Ref. 5. 
Note that the damage threshold was determined for 

30-ns long pulses. The data given in the Table were 
used in the subsequent calculations. 

The SHG efficiency reaches its maximum when 
the phase matching conditions are fulfilled for the 
interacting waves. The fulfillment can be obtained by 
selecting pump wave polarization and the angle 
between the direction of pump wave propagation and 
the optical axis of the crystal. The nonlinear figure of 
merit Ì = deff

2
/(n1

2
n2) is one of the key parameters 

determining the frequency conversion efficiency. Here 
deff is the effective nonlinear susceptibility, which is 
determined with the allowance for the phase-
matching angles and the type of symmetry of a 
crystal; n1 and n2 are the refractive indices at the 
pump and second harmonic frequencies. 

Figure 1 depicts the spectral dependences of the 
phase-matching angles and the nonlinear figures of 
merit for the crystals under study calculated using 
the Sellmeier equations.4 Regardless of an obvious 
advantage of CdGeAs2 crystal over the other crystals 
in the figure of merit, it should be noted that this 
crystal has the highest absorption at the pump and 
second harmonic wavelengths due to free carriers. To 
decrease this absorption down to the level of 0.3–
0.5 cm–1, cryogenic cooling down to 77 K is usually 
used, and this significantly deteriorates the operating 
ability and restricts possible length of the crystals. It 
can be seen from Fig. 1b that at doubling of the 9-
µm band of a CO2 laser the ZnGeP2 crystal must 
exceed AgGaSe2 in efficiency, simultaneously being 
inferior to it at SHG of the 10-µm branch. In the 
ZnGeP2 crystal it is also possible to change the phase 
matching conditions and to control them by heating 
the crystal (this is described in detail in Ref. 6). 
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Parameters of nonlinear crystals – doublers of CO2 laser frequency  

Crystal 
Parameter 

ZnGeP2 CdGeAs2 AgGaSe2 HgGa2S4 Tl3AsSe3 GaSe 

Symmetry group 4
–

2m(+) 4
–

2m(+) 4
–

2m(–) 4
–

(–) 3mm(–) 6m2(–) 
Type of phase matching eeo eeo ooe ooe ooe ooe 
Phase-matching angles, degs 63–90 32.9–33.8 71.1–56.5 65–90 18.5–19.3 10.7–12.4  
n1o, n1e, 3.07 3.10 3.51 3.60 2.60 2.57 2.38 2.34 3.34 3.16 2.82 2.45 
n2o, n2e 3.10 3.14 3.54 3.63 2.62 2.59 2.42 2.37 3.36 3.17 2.84 2.46 
Nonlinear coefficient d, pm/V d14 = 75 d14 = 236 d36 = 39 d36 = 35.2 

d31 = 11.7 
d15 = 66 
d22 = 32 

d22 = 54 

Effective nonlinear susceptibility, 
deff, pm/V 

[d14sin(2θ) ×
× cos(2ϕ)] 

[d14sin(2θ) × 
× cos(2ϕ)] 

[d36sin(θ) × 
× sin(2ϕ)] 

[d36sin(θ) × sin(2ϕ) +
+ d31sin(θ) × cos(2ϕ)]

[d15sin(θ) – 
– d22cos(θ) × 

× sin3ϕ] 

[d22cos(θ) × 
× sin(3ϕ)] 

dne/dT, K–1 ⋅ 105 
dno/dT, K–1 ⋅ 105 

16.1 
14.7 

21.5 
24.3 

8.36 
8.1 

– 
– 

3.55 
–4.52 

– 
15 

Heat conductivity κ, 
W/(cm ⋅ K) ⋅ 103 0.36 0.067 0.01 – 0.0035 0.162 
Heat capacity Ñ, J/(g ⋅ K) 0.463 0.3 0.3 – 0.19 0.35 

Density ρ, g/cm3 4.158 5.72 5.71 4.95 7.83 5.03 
Linear absorption coefficient, cm–1       
2δ1 0.36 0.1 0.01 0.2 0.005 0.05 
2δ2 0.01 0.5 0.005 0.1 0.005 0.05 

Damage threshold Id, MW/cm2 142 157 139 294 132 121 

 

 

 
 

   Wavelength, µm 

Fig. 1. Spectral dependences of the phase-matching angles 
and figures of merit for SGH using type I of the interaction 
at Ò = 300 K in nonlinear crystals: ZnGeP2 (1),

 

ZnGeP2 

[Ò = 500 K] (2), CdGeAs2 

(3), AgGaSe2 (4), HgGaS4 (5), 
Tl3AsSe3 (6), and GaSe (7). 

1. Mathematical model of pulsed SHG 
 
Using standard paraxial approximation of the 

wave equation, one can obtain the following system 
of equations for the complex amplitudes of the pump 
wave À1 and second harmonic À2 (Ref. 7):  
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Here k1 and k2 are wave numbers of the pump and 
SH waves; ∆k = k2 –2k1 is the wave mismatch; β1,2, 
δ1,2, σ1,2 = 4πk1d1,2eff /n2(ω1,2) are the walk off angles, 
linear absorption coefficients, and the coefficients of 
nonlinear coupling, respectively. In this case, if the 
frequencies ω1 and ω2 are far from characteristic 
fundamental absorption bands (just this is the case 
most interesting in practice), the additional Kleiman 
symmetry conditions are valid and the values of d1eff 
and d2eff coincide.8 Any physical effect can be taken 
into account in Eqs. (1) by introducing the appropriate 
term.9 In addition to linear absorption, Eqs. (1) take 
into account the walk off of the energy of interacting 
beams (diaphragm aperture effect) caused by 

birefringence. It decreases the efficiency of SH 

conversion, especially, at small cross sections of the 
pump beam and in long crystals. This effect is described 
in Eq. (1) by the terms with the first derivative with 
respect to the cross coordinate õ and the walk off 
angles β determined by the equation  
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 β ≈ tanβ = sin(2θ) [(no – ne)/no], (2) 

where θ is the phase-matching angle; no and
 

ne are the 
refractive indices for the ordinary and extraordinary 
waves. The factor åõð(± i∆kz) describes the effect of 
phase mismatch of the interacting waves on the 
conversion efficiency. 

In the process of parametric frequency conversion, 
some energy of the interacting radiations is absorbed 
thus causing heating of the crystal. This is taken into 
account in Eqs. (1) by the terms proportional to the 
linear absorption coefficients. Because of the 
inhomogeneous intensity distribution in the pump 
beam, inhomogeneous heating occurs across a crystal. 
This heating is characterized by the temperature 
distribution Ò(õ, ó) = ∆Ò(õ, ó) + Òs, where Òs is the 
temperature of the lateral surface of the crystal, 
∆T(õ, ó) is the spatially inhomogeneous addition. At 
transition through the lateral surface of the crystal, 
the temperature jump Òs – Ò0 is observed (Ò0 is the 
thermostat temperature) along with the associated 
heat flux from the crystal to the thermostat. In the 
further consideration, we will take into account only 
spatially inhomogeneous component ∆T(õ, ó) of 
Ò(õ, ó), since thermal refraction arises due to the 
cross temperature gradients, and the homogeneous 
part of the thermal mismatch of phase matching can 
be compensated for by turning the crystal.7 In 
Refs. 10 and 11, the three-dimensional heat conduction 
equation was solved in a system of cylindrical 
coordinates and it was shown that the longitudinal  
temperature  gradients can be neglected. 

Inhomogeneous heating of the crystal leads to 
spatially inhomogeneous distribution of the refractive 
indices of the interacting radiations. As this takes 

place, the inhomogeneous (over the beam cross section) 
phase mismatch and the spatially inhomogeneous 
dispersion birefringence Â = ne(θ) – no arise, and this 
limits the efficiency of the process. Unlike the single 
pulse mode, in the repetitively pulsed mode the 
thermal effects are accumulated and have the decisive 
effect on the frequency conversion process. 

Having in mind the above-said, the account of 
thermal blooming effect of laser beams assumes 
supplementing the system of equations (1) with the 
two-dimensional heat conduction equation and 
introducing the expressions (iγ1,2TA1,2) determining 
these effects. The resulting system of equations for 
calculation of the SHG efficiency takes the form:  
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where 
1,2

1,2 1,2

n
k

T

∂
γ =

∂
 is the coefficient responsible for 

thermal blooming; χ = κ/(ρÑð) is the thermal 
diffusivity; Ò is the excess of the crystal temperature 
over the ambient temperature; κ is the heat 
conductivity; ρ is  the density; Ñð  is the specific heat. 

The system of equations (3) is complemented by 
the boundary and initial conditions. The distribution 
of the pump wave entering the crystal is set in accord 
with the intensity distribution over the cross section 
of the pump beam. In calculations we used model 
rectangular pulses and pulses with the Gaussian 
distribution  

 0

1
( , , ) ( , , 0, ) ( , , )A x y t A x y z t A x y t= = = = 

1/ 2

0 2 2 2 2 2

3/2 2

2
exp( ( )/ 2 ) exp( 2 / ).A x y w t

w

 = − + − τ π τ 
 

  (4) 

Here w is the effective beam radius at the 1/å level; 
τ  is the duration of the pump pulse at the 1/e power 
level; À0 is the amplitude of the pump. For the 
second harmonic wave it was taken that 
À2(x, y, z = 0, t) = 0, as is the general case for the 
fields beyond the crystal, that is, 

 1,2(0, , , ) 0,A y z t =   1,2( , 0, , ) 0,A x z t =  

 1,2( , , , ) 0,
x

A L y z t =    1,2( , , , ) 0,
y

A x L z t =   

where Lx × Ly × Lz are the dimensions of the 
nonlinear crystal. The initial temperature of the 
crystal was taken equal to the ambient one, that is, 
Ò(x, y, z, t = 0) = 0. Heat exchange with the 
coefficient α was assumed to proceed through the 
lateral surface, that is,  

 ( / ) 0,
x

x L
T x T

=
κ ∂ ∂ + α =   

0
( / ) 0,

x
T x T

=
−κ ∂ ∂ + α =  

 ( / ) 0,
yy L

T y T =κ ∂ ∂ + α =    
0

( / ) 0.
y

T y T =−κ ∂ ∂ + α =  

The system of equations (3) with the above 
boundary and initial conditions describes the following 
physical effects influencing the SHG efficiency: 

1) pump depletion (energy transfer from the pump 
wave to the second harmonic wave); 

2) absorption of the pump and second harmonic 
waves; 

3) energy walk off of the pump beam or the 
second harmonic wave; 

4) diffraction blooming of the beam; 
5) inhomogeneous heating along the cross 

coordinates; 
6) thermal blooming of the pump beam and  

SH beam. 

(3)

(5)
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2. Technique for calculation  
of SHG efficiency 

 
Having passed to dimensionless variables and 

introduced the following designations:  

 ζ = z/Lz, ξ = x/Lx, υ = y/Ly, d = Lz/(2k1Lx,y
2

), 

 u1,2 = A1,2/A0, ∆ = ∆kLz, 1,2β% = β1,2Lz/Lx, g = Lz/lnl, 

 1,2δ% = δ1,2Lz, T
τ% = Lx.y/χ, Tî = 2δ1It (0) 

T
τ% /(ρCp), 

 1,2 1,2 ,

o

z
L Tγ = γ%    / ,

T
tτ = τ%    / ,oT T T=%  (6) 

we obtain the system of equations: 
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The basic idea of the numerical method used for 
solution of this system of equations consists in 
approximating the continuous nonlinear medium by a 
set of equidistant layers, each characterized by an 
equivalent complex enhancement factor. The medium 
between layers has no enhancement factor. The field 
propagation between the layers is described using the 
Fourier transform. For this purpose, it is reasonable 
to use Fast Fourier Transform (FFT) algorithms, which 
are less time-consuming as compared to alternative 
finite-difference methods for solution of nonlinear 
parabolic equation.12,13 

The first two equations can be written as  

 
2 2

1

2 2
.

j j j
j j j

u u uu
id f

 ∂ ∂ ∂∂
 + + + β =
 ∂ζ ∂ξ∂ξ ∂υ 

%  (8)  

Here d1 = d, d2 = d/2. 
The numerical solution of Eqs. (8) was reduced 

to successive integration of homogeneous equations 
(propagation of the fields u1,2 through the free space 
at a distance ∆ζ) using FFT with the allowance made 
for the walk off and integration of the equations  

  duj/dζ = fj. (9) 

at each ζs layer by the Runge-Kutta method. 
To decrease the number of terms and increase the 

computation speed, the terms describing blooming 
were not included in fj, but taken into account  

by introducing phase screens exp( )i T− γ∆ ∆ζ%  at each  

ζs layer. 

Numerical simulation of the SHG has been 
carried out in two modes: single pulse mode and 
repetitively pulsed mode with the allowance for the 
processes of temperature field establishment in a 
crystal. When simulating numerically the propagation 
of the fields u1,2(ξ, υ) by the FFT method, it is 
necessary to specify the interval G = Lx,y/2w to meet 
the boundary conditions and the number of grid points 
(Nξ, Nυ) for representation of the functions of cross 
coordinates ξ and υ. The appropriate values of G and 

(Nξ, Nυ) are determined by the Fresnel number of the 

problem under consideration and by the smoothness of 
the initial distribution of the pump wave.14 For a 
smooth initial Gaussian distribution decreasing fast 
toward the edges, the Fresnel number does not exceed 
25–50, but the interaction of waves in the SHG 
process at the temperature distribution inhomogeneous 
over the beam cross section gives rise to small-scale 

inhomogeneities. Variations of the parameters G and 
Nξ,υ at solution of the system (7) showed that the 

values G = 4 and Nξ,υ 

= 64 and 128 are quite sufficient 
for realistic description of small-scale inhomogeneities 
of u1,2(ξ, υ) arising in the SHG process. Note that at 
these values of G and Nξ,υ, the fields of the pump and 

SH waves distort insignificantly in the process of 
propagation due to the limitedness of the Fourier 
spectrum. At ∆ζ = 0.05 – 0.1 (Nz = 10 – 20) the results 
of calculation of the conversion efficiency and the 
amplitude u(ζ)1,2 for the case of no diffraction, 
homogeneous intensity distribution, and rectangular 
pulse of the pump wave agree well with the known 
analytical equations for this case.7 

For solution of the heat conduction equation with 
the third-order boundary conditions we took the 
implicit alternating direction method15 because of its 
simple program implementation. This method is 
characterized by the second order of accuracy with 
the error Î[(∆τ)2, ∆ξ2, (∆υ)2] and is unconditionally 
stable. The time step for integration of the system (7) 
was chosen to be such that the field phase changes 
due to introduction of ζ phase screens describing 
thermal blooming at every layer by a rather small 
value: γ∆Ò∆ζ ≤ 1. Then, taking into account the 
condition ∆ζ ≤ 0.1 and Eq. (6), we obtain 

 .
(2 / ) 2 (0)

p

z t

C
t

L I

ρ
∆ ≤

π λ ∆ζγ δ
 (10) 

From the inequality (10) it follows that 
∆t ≤ 0.1–0.3 s. For the considered initial data and 
types of crystals, 

T
τ%  is 25–240 s. Therefore, if 

conditions (10) hold, the requirements of the small 
step in t are met from the viewpoint of the 

approximation error. The value of α was taken equal 
to 5 ⋅ 10–2

 W/(cm2
 ⋅ K), which corresponded to the 

conditions of contact heat removal.16 The pump 

intensity was taken equal to the half surface damage 
threshold, thus providing for long and reliable 
operation of the frequency doubler. 
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3. Results on numerically  
simulated SHG 

 

The calculations have been performed for the 

single pulse and repetitively pulsed modes on the 
assumption of the rectangular time shape of radiation 
pulses and rectangular intensity distribution in the 
cross section of the pump pulse, as well as for the 
Gaussian time shape of pulses and the Gaussian 

intensity distribution taking into account and 

neglecting the processes of temperature field 

establishment in a crystal. The following parameters 
of the pumping CO2 laser were taken: λ = 9.55 µm 
[9Ð(20) line], Åð = 50 mJ, the pulse repetition 
frequency up to 1 kHz. 

There exists a characteristic length of process 
development, at which the effect is accumulated up 
to a value affecting the conversion efficiency.7 
Leaving in the equations only the terms describing 

the corresponding effects and derivatives 1,2 / ,A z∂ ∂  

we can find the characteristic lengths of the processes 
by turns. The need in taking into account one or 
another effect in calculating the efficiency is 
determined by comparing the crystal length with the 
corresponding characteristic length of a process. Thus, 
for example, for the ZnGeP2 crystal at the given 

parameters of the pump radiation, the nonlinear length 

is lnl = ( σ1σ2A
0)–1

 = 0.8 cm, the aperture length is 

lw = 2w/β = 16 cm (2w is the diameter of the input 
beam), and the diffraction length is ld = 2πw0

2
n/λ = 

= 130 cm (w0 is the radius of the Gaussian beam at 
the beam waist at the 1/e intensity level). 

 Figure 2a depicts the SHG efficiency as a 
function of the length of the ZnGeP2, CdGeAs2, 
HgGa2S4, Tl3AsSe3, AgGaSe2, and GaSe crystals for 
the Gaussian time shape of the pulse and the 
Gaussian pump intensity distribution at the single 
pulse mode of conversion for pre-breakdown pump 
intensity. The pulse was divided into 16 layers in 
time. The experimentally determined values of the 
SHG efficiency in these crystals have been compared 
in Refs. 17 and 18. 

Figure 2b depicts similar dependences but for 
the pump intensity of 30 MW/cm2 fixed for all the 
crystals. In SHG of TEA CO2 lasers, ZnGeP2 crystals 
have 1.8 times lower efficiency as compared with that 
of Tl3AsSe3 and HgGa2S4 crystals at the same pump 
intensity because of the higher level of optical loss. 
This loss restricts the maximum reasonable length of 
ZnGeP2 crystals to ∼  2 cm. As compared to AgGaSe2 

and GaSe crystals, the loss of the maximum achievable 
efficiency is 1.5 times. 

The current state of the technology of growth of 
nonlinear crystals is such that in using crystals shorter 
than 1–2 cm, the ZnGeP2 crystals occupied and occupy 
the second place in the SHG efficiency after the 

CdGeAs2 crystals and excel all crystals in performance 
characteristics. With the today’s level of technology 

development, the use of Tl3AsSe3, AgGaSe2, and 
HgGa2S4 crystals more than 2 cm long and even GaSe 

more than 5 cm long allows implementation of more 
efficient CO2 laser SHG with the corresponding 
increase of the cost. The realistic level of the SHG 
efficiency is ≥ 40%. 

 

 
a 

 
Crystal length, cm 

b 

Fig. 2. Efficiency of CO2 laser SHG vs. length of coated non- 
linear element for ZnGeP2 (1), CdGeAs2 

(2), AgGaSe2 (3), 
HgGaS4 (4), Tl3AsSe3 (5), GaSe (6) crystals at pre-
breakdown pump intensities (a) and pump intensity  
Ð = 3 ⋅ 107 W/cm2 (b). 
 

Some estimates for SHG of a repetitively pulsed 
CO2 laser are depicted in Figs. 3–5. The SHG 

efficiency ηÅ in the cross section of the ZnGeP2 
crystal was calculated for the successive moments in 
time after the beginning of pump. Figure 3 depicts the 
calculated results for 0.5 s after the beginning of pump. 

It can be seen that the conversion efficiency varies 
with SHG evolution. The beams acquire ring structure 
varying in time. This is connected with the fact that 
the phase mismatch correlates with the temperature 
distribution over the beam cross section. Asymmetric 
transformation of the pump and SH beams is 
observed because of the effect of radiation walk off. 
The conversion efficiency becomes a complicated 
function of the crystal length, and its optimal length 
should be determined separately in every particular 
case. The necessary condition in this case is that the 
intensity at the exit surface of the crystal should not 
exceed the optical damage threshold. 
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Figure 4a demonstrates how the conversion 

efficiency changes with time. At a given pump pulse 
repetition frequency, there is an optimal (from the 
viewpoint of obtaining the maximum conversion 

efficiency for the SHG period) crystal length. The 
ZnGeP2 crystal is characterized by the strong positive 
temperature dependence of the refractive indices at the 
pump and SH waves that leads to formation of a 

positive focusing lens. The intensities of the pump and 
SH waves on the crystal exit surface are shown in 

Fig. 4b. 

The beams propagating in the crystal have a 
multifocal structure. As the crystal heats, the focus 
of the thermal lens for the pump and SH waves 
approaches the surface from the infinity and then 
moves further into the crystal. The focuses cross the 
rear edge of the crystal in turn: first that of the 
pump wave, then that of the SH wave, then the 
pump wave again, and so on. As the total intensity of 
the pump wave and the SH wave exceeds the surface 
damage threshold, the thermal self-focusing is an 
additional factor restricting the mean pump power.  
 

 

 

 
 

Fig. 3. Evolution of thermal self-focusing in ZnGeP2 crystal at SHG of CO2 laser pulses with the repetition frequency of 
1 kHz. Energy distribution cross sections for the pump wave (1) and SH (2) at propagation along the axis z 0.5 s after the 
beginning of pump.  
 
 

 

Fig. 4a. Efficiency of conversion into the second harmonic 
vs. length of ZnGeP2 crystal at pulse repetition frequency of 
1 kHz at the successive moments in time 10–7 (1), 0.1 (2), 
0.25 (3), 0.5 (4), and 1 s (5). 

 

Fig. 4b. Time dependence of the maximum intensity of the 
pump wave (1) and SH (2) at the exit surface of ZnGeP2 
crystal 3.5 cm long at the pump pulse repetition frequency 
of 1 kHz. 
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Fig. 5. Time dependence of the mismatch angle compensating 
for the effect of thermal self-focusing for SHG of 50 mJ pulses 
in ZnGeP2 

crystals at the pulse repetition frequency of 400 Hz 
and the crystal length of 3.5 (1), 2.5 (2), and 1.5 cm (4), as 
well as 1 kHz and the crystal length of 2.5 (3) and 1 cm (5). 

 

When the pulse repetition frequency decreases (this 
means that the mean pump power decreases too), the 
focus of the thermal lens is beyond the crystal and 
the radiation intensity on the rear surface does not 
exceed the surface damage threshold. 

However, the development of thermal self-
focusing leads to a decrease in the SHG efficiency 
and in the mean output power of SH. One of the 
ways to solve this problem may be compensation for 
the effect of thermal self-focusing by turning the 
crystal at some angle toward the direction of decreased 
mismatch as the crystal is heated. Figure 5 presents 
an example of the phase mismatch that provides for 
maximum SHG efficiency for the pump laser 

parameters specified above. Note that curves 2 and 4 

in Fig. 5 that correspond to the crystal length of 2.5 
and 1.5 cm almost coincide. 

Sometimes, in the experiments, we used controlled 
heating of ZnGeP2 crystals to shift the phase-matching 
curves into the longwave spectral region. The 

reasonable limits of crystal heating did not exceed 
160–200îC depending on the line of the pump CO2 
laser.6 At higher temperatures, the increase in the 
phonon absorption and the corresponding decrease in 
the SHG efficiency exceeded its growth due to a 
decrease in the phase-matching angle.  

 

4. Discussion 
 

Having fixed some, for example 20%, decrease in 
the SHG efficiency and knowing the dependence of 
the SHG efficiency on the pulse repetition frequency, 
we can estimate the limiting mean pump power at 
partial compensation for the self-heating effect. In 
using the ZnGeP2 crystals of high optical quality and 
reasonable length of the nonlinear element (2–2.5 cm) 
the maximum pump pulse repetition frequency is 
300 Hz. In the case considered, it corresponds to the 
mean pump power of 15 W and maximum SHG 

efficiency of 55%. In using crystals of moderate optical 
quality, these parameters are 10 W and 30% with the 
pulse repetition frequency of 200 Hz and the length 
of nonlinear elements of 1.5–2 cm. 

Similar calculations were also performed for other 
nonlinear crystals. In the AgGaSe2 crystals of high 
optical quality, the 20% decrease in the SHG efficiency 
is observed at the maximum pump pulse repetition 
frequency of 400 Hz and the mean power of 20 W. 
The highest efficiency in this case is 50% with 5-cm 
long crystals. If crystals of a unique quality are used, 
the 20% decrease occurs at the pulse repetition 
frequency of 1 kHz and the mean pump power of 
50 W, and the maximum efficiency achieves 53% 
with the crystals of the same length. 

The Tl3AsSe3 crystals are characterized by 

relatively low heat conductivity, and for the crystal 
sizes used in the calculations the time for establishment 
of the temperature distribution is 10 s. For these 
crystals in the case of a unique optical quality, the 
20% decrease was observed for the maximum pump 
pulse repetition frequency of 500 Hz and mean power 
of 25 W. The maximum SHG efficiency was 55%, but 
for 9 cm long nonlinear elements. The HgGa2S4 
crystals were not considered in this case, because no 
correct data are available on their thermal and 
thermo-optical properties. When considering crystals 
of moderate optical quality, the high optical damage 
threshold and thermal parameters of the ZnGeP2 
crystals turn out to be the decisive parameters.19 In 
their potential, the ZnGeP2 crystals still yield to only 
the CdGeAs2 crystals cooled down to cryogenic 
temperatures, if the crystal length does not exceed 
∼  2 cm. When using high-quality crystals, their thermal 
properties are no longer decisive, and 5–10-cm long 
samples of the Tl3AsSe3, AgGaSe2, and even GaSe 

crystals  have  maximum  potential  SHG efficiencies. 
Note that when the walk off effect important for 

frequency conversion of small-aperture beams (w = 1–
4 mm) is taken into account, AgGaSe2 has an advantage 
over all other crystals. Small apertures are typical of 
mobile laser systems. Without antireflection coating, 
the SHG efficiency in the crystals considered is nearly 

halved, and this decrease is most significant for the 

Tl3AsSe3 (2.4 times) and CdGeAs2 (2.2 times) crystals 

because of the high values of the refractive indices. 
The SHG efficiency was also calculated for cw 

radiation and for short 1-ns duration pulses. In the 
former case, the conversion efficiency is the lowest in 
the ZnGeP2 crystals (only 5 ⋅ 10–4% at the pump 
intensity of 2 ⋅ 105

 W/cm2). However, if the walk off 
effect is taken into account, the situation changes 
drastically. In particular, for the GaSe crystals the 
maximum length is 2.7 mm for the beam diameter of 
1 mm, and for the Tl3AsSe3 crystals it is 5.5 mm. The 
real competitors to the ZnGeP2 crystals in this case 
are the AgGaSe2, HgGa2S4, and CdGeAs2 crystals due 
to high figure of merit. The advantage of one or 
another crystal in this case will be determined by the 
particular SHG scheme. 

The extremely high conversion efficiencies up to 
90% level and higher can be obtained in all nonlinear 
crystals of the mid-IR region pumped by radiation 
with the pulse duration τ ≈ 1 ns. In this case, the 
length of the CdGeAs2 crystals should be within 2–
3 mm, that of the ZnGeP2, AgGaSe2, HgGa2S4, and 

t, s

∆θ, deg. 
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Tl3AsSe3 crystals should not exceed 4–6 mm, and 
that of the AgGaSe2 and GaSe crystals should be 8–
9 mm. In all the cases, the use of centimeter-long 
crystals makes no sense.  

 

Conclusion 
 

The possibilities of creating second harmonic 
generators for TEA CO2 lasers with the mean output 
power up to tens of watts have been analyzed. 

The system of connected equations for the 

amplitudes of the interacting waves has been solved 
along with the two-dimensional heat conduction 

equation, and this allowed us to take into account 
the thermal blooming effects at SHG. 

The dependence of the efficiency on the crystal 
lengths for different crystals has been drawn with the 
allowance for optical quality of a crystal. The calculated 
results on the conversion efficiency in the case of no 

diffraction, homogeneous intensity distribution, and 
rectangular shape of the pump pulse agree well with 

the known analytical results for these conditions, thus 

confirming  the  correctness  of the estimates obtained. 
The angles of crystal turn that maximize the 

SHG efficiency and the optimal crystal lengths 
ensuring the highest SHG efficiency at the fixed 
pulse repetition frequency have been calculated. It 
has been found that the maximum SHG efficiency in 
ZnGeP2 is equal to 56% at the pulse repetition 
frequency of 300 Hz, and this value corresponds to 
the mean pump power of 15 W.  

It has been shown that conversion of the 

repetitively pulsed radiation of the TEA CO2 laser 

without significant decrease in the efficiency due to 
thermal phase mismatch is possible in the ZnGeP2 
crystal of good optical quality at the mean power up 
to 5 W and in the AgGaSe2 and Tl3AsSe3 crystals up 
to 10 W. In the crystals of higher optical quality the 
mean power can be up to 10 and 20 W, respectively. 
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