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The effect of small surface deformations of spherical microparticles on the Q-factor of their
natural resonance modes has been studied in detail. Based on the geometric optics representation of a
natural mode of a sphere as a congruence of optical rays confined between the particle surface and the
internal caustic, a simple equation is derived that relates the Q-factor of a mode with the surface
deformation amplitude. The values of the Q-factor of deformed water droplets are compared with similar
results obtained by the perturbation method of the wave theory.

Micron-size spherical particles in the optical
wavelength region can be considered as open cavities
having a set of high-Q resonance modes. Theoretically,
the Q-factor of some of these modes often referred to as
whispering gallery (WG) modes can achieve rather high
values.! However, the Q-factor higher than ~ 108 has not
been observed in practice yet.2 One of the possible
causes for this is a non-spherical shape of particles. As
to solid particles, their spherical shape can be distorted
by inhomogeneities formed in the process of their
generation. The shape of liquid aerosol particles is subject
to surface deformations due to both natural causes
(temperature  fluctuations, air flows) and the
ponderomotive forces due to the action of an intense
optical field.3

The Q-factor of a particle-microcavity is a very
important characteristic affecting the processes of nonlinear
interaction of light fields in such systems.4 At the same
time, the Q-factor itself depends not only on the optical
characteristics of a substance, but also on the geometric
shape of a microcavity. As to spherical particles, any
deformations of their surface finally lead to deterioration
of resonance properties. The most significant cause of
the decrease of the Q-factor is perturbation of phase
matching conditions for resonance of optical modes in
deformed particles.®> This changes the spatial structure
of natural oscillations and leads to a shift in the
frequency position of resonances.

As known, open cavities, among which there are
low-absorbing dielectric particles, have an additional
channel for dissipation of stored electromagnetic energy,
namely, radiative losses. The natural frequencies of
electromagnetic oscillations in such systems prove to be
significantly complex, and the ratio of their real o' and
imaginary ©” parts Q =o' /20" is often used to determine
their Q-factor. In view of this circumstance, the problem
of studying the resonance characteristics of deformed
spherical particles is closely connected with the problem
of determining the frequencies of their natural
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electromagnetic oscillations, that is, solution of the
Helmholtz equation for the electric field vector E(r):

2
rot rot E(r) + ¢, (5—2 E(r) =0 1)

under condition of continuity of its tangential
components at the perturbed particle surface:

[E;(r) —Ei(r)] xn, =0, [Hi(r) —Hy(r)] xn, =0, (2)

where g, is the dielectric constant of the particle
substance; n, is the external normal to the particle
surface; ¢ is the speed of light in vacuum, and the
subscripts i and s stand for the field inside the particle
and outside of it, respectively. The solution of Egs. (1)
and (2) for a sphere at g, = const is well-known and can
be presented in the form of two systems of orthogonal
functions specifying the TE,,,, and TH,,,, electromagnetic
modes®:

E,, (1) = A4,V x [M,,,,(8, @) &,(kr)] +
+ Bun Mnm(e’ (P) E_vn(kr):

(r) = CppV x [M,,,(8, @) Wn(\ls_a kr)| +

+ Dy an(e’ (P) \lfn('\lg_a kr) . (3)

Here A,,, Buw Cpm and D,,, are the amplitude
coefficients; v, and §, are the spherical Riccati— Bessel
functions; M,,,, are the spherical vector harmonics; n
and m are the mode indices, whose meaning will be
discussed below.

At arbitrary deviations of the particle shape from
the ideally spherical, the analytical solution of Eq. (1)
can be found only at a small amplitude of deformations.
The canonical method for solution of this problem is
application of the perturbation theory. This approach was
realized in Refs. 7 and 8 and with some modifications
in Ref. 9. Lai et al.7.8 and Datsyuk et al.9 replaced
surface perturbations of a spherical particle with
perturbations of the particle dielectric constant at passage
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through the particle boundary. As a result, a system of
coupled equations with integral coefficients was obtained
for the determination of natural frequencies.” In the
case of symmetric particle deformations described by the
function f(r, 0), in the first approximation with respect
to the small parameter of the deformation amplitude
€4, this system has the following form:

Aknm Vv sz mm 2
knm - 2Gn ) Vn —fdl‘ gAf(r’e)|Mnm| ’

#
ag
G, = (g, |- 1)W|én(xa)|2,

where Ry, = @4/ C; ARy, is the change in the complex
wavenumber for the natural mode E,,, at deformation
of the particle with the radius @y and the diffraction
parameter x, = 2nay,/A. The Q-factor of the particle in
this case can be represented as a series over the
deformation amplitude &4 (Ref. 8):

1/Q=1/Q¢+ Ciey + Cofi + ..., (4)

where Qg is the Q-factor of the ideal sphere, and the
coefficients Cy and C, depend on the function f(r, )
and can be expressed through the angular integrals and
the combination of logarithmic derivatives of spherical
functions.

In Refs. 10-12, to find natural frequencies of
oscillations, the perturbation was introduced in the
boundary conditions (2), rather than in equation (1)
itself. In this case, the structure of eigenfunctions E,,,
was chosen similarly to the structure of eigenfunctions
of the ideal sphere, and equations at the particle
boundary were written with the allowance for particle
deformations. Generalization of this approach to the case
of arbitrary types of substance inhomogeneity and
perturbation of the particle surface is the method of layer-
by-layer T-matrices (transformation matrices) used, for
example, in Refs. 13 and 14.

The main disadvantage of the techniques considered
above is their complicated numerical realization that
requires high-performance computers and voluminous
computations. In our opinion, this prevents the use of
the results of these theoretical investigations for
interpretation of experiments. The proposed method for
estimation of the Q-factor of weakly deformed spherical
particles is free of this disadvantage and is based on the
ray approximation of eigenfunctions of Eq. (1) that
was proposed in Ref. 15.

Our approach is based on the assumption that the
decrease in Q-factor of a deformed sphere is mostly caused
by the shift of the resonance frequency of natural modes
from the initial (unperturbed) value. As a consequence,
the Q-factor of a particle measured at a fixed frequency
of the natural mode decreases, because the resonance
conditions for this frequency are distorted. It is obvious
that the rate of the decrease of Q-factor in this case is
largely determined by the shape of the spectral resonance
curve, which, as is well known,!:4 is described by the
Lorentz profile:
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0) / Qg =1/[1+ (Ax/T)?], Ax = x = x4, (5)

where T = x,/Qy is the resonance halfwidth; x = ka.
Thus, the main task of this analysis is to correlate
particle deformations with variations of the diffraction
parameter Ax. The definition of the diffraction
parameter as a characteristic of optical properties of,
first of all, a spherical body points to the necessity of
representing the deformed particle also as a sphere, but
with other radius, which is determined by the character
and the amplitude of deformations.

For further consideration of the details of the
proposed approach, it is necessary to pass from the
wave description to the geometric optics description of
the resonance oscillation modes of the dielectric spheres.

As known, the effect of resonance excitation of the
optical field inside a spherical particle is observed as
the frequency of the pump radiation coincides with the
frequency of some WG mode of a dielectric sphere. A
WG mode can be presented as a standing wave formed by
superposition of two waves propagating in the counter
directions. Reflecting from the liquid /ambient medium
interface, these waves make a full turn (or several
turns) around the droplet surface and come to the initial
point in phase, thus forming the positive feedback. The
spatial structure of such modes is usually characterized
by three integer indices: two angular numbers (mode
number 7 and azimuth index m) and one radial number
(mode order j). The electromagnetic field of the WG
mode has a sharply inhomogeneous spatial profile and
concentrates in both the radial direction near the particle
surface and the latitudinal direction (at n >>1). This
field occupies an orbit passing through the particle center
and lying at the angle 0,,,, = arccos(m /n) relative to the
equatorial cross section (Fig. 1). The latter circumstance
is especially important, since it allows us to pass from
the 3D pattern to its 2D analog in the orbit plane in
the further investigation of the spatial distribution of
fields of particle natural modes.

Fig. 1. Scheme of localization of WG mode in a spherical
particle: 9,,, is the polar angle of tilt of the mode orbit; 9 is
the azimuth angle in the orbit plane of WG mode.
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Let us use the geometric optic representation of
the WG mode as some congruence (system) of optical
rays existing in a closed area bounded by the curve S,
which transforms into itself after a finite number of ray
reflections from the interface.!> Such a system of rays
turns out to be bounded in space by the caustic C on
one side and by the surface S on the other side (Fig. 2),
as well as it has the property of stability in the first
approximation.

Ray trajectories

Fig. 2. Geometric optics representation of WG mode in a
spherical particle: C is internal caustic; S is the particle surface
of radius ag; M is an arbitrary point on the particle surface; s
is unit vector tangent to the surface; d is the distance along
the normal from the particle surface.

The structure of the electromagnetic field
characterizing the WG mode in a sphere of radius g
can be written in terms of the Airy function!6 that is
the asymptotic representation (n >j, n>>1) of the
traditional resolution of the field of natural modes in
terms of spherical harmonics (3):

Ai(d /Dy + o))
E,, = ———————exp {ik,; s},
nmj |Ai’(0(j)| !Dnj P nj

where s is the arc length of the curve S measured from
some initial point to the point M; a; is the root of the
Airy function (Ai(=a;) = 0); k,; is the mode eigenvalue.
The parameter D, = (2k,;/ag)!/3 characterizes the
thickness of the layer, the mode field concentrates in,
and the equation of caustic C has the form

d = D, a; + Ol(n /3.

Note, for information, that the grazing angle y,; of
the ray at its reflection from the surface is connected
with the mode eigenvalues as follows:

Vnj = '\'an]' (9/2610 kn]‘)1//3.

Figure 3 depicts the dependence of the caustic C
position on the WG mode number n for several values
of its order j. It can be seen that as the mode number
increases, the distance from the caustic to the droplet
surface decreases, and, correspondingly, the area occupied
by the WG mode decreases. The dependence has the
behavior similar with the decrease in the order of the
resonance mode.
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Fig. 3. Dependence of the relative radial coordinate of the
caustic 7, = (ayp —d)/ay on the WG mode number n for
different values of the mode order j (numbers by the curves).
The dashed line 6 shows the caustic position for total internal
reflection angle.

For a stable system of rays representing the WG
mode to be formed, the phase matching conditions should
be fulfilled. In terms of geometric optics, these conditions
correspond to the so-called conditions of ray phase
quantization:

kA =2mn, kn=2n (j+3/4), (6)

where A is the length of the caustic C; n is the sum of
lengths of the rays reflected from the surface S minus
the length of the caustic part between tangent points.
Solution of the system (6) by the method of successive
approximations gives the equation for the eigenvalues
ky,; of WG modes in the form of a fractional-power series:

kyj = kgj» [1+ Az(kgf)_z/3 + A4(k2]»)_4/3 + .1

n>>1. )

Here kgj =2nn/L, L is the length of the profile of the
surface S, and the coefficients A; depend on the
curvature of the surface S:

0L]' L dS 2
Ay =537 f 3 A= 1/343
0

where p(s) is the curvature radius of the surface at the
point with the coordinate s.

Deformations of the surface S obviously change
the phase relations in the previous congruence of
rays and lead to the situation that the quantization
conditions (6) are fulfilled already at somewhat
different values of k,. From the structure of the
series (7), it can be seen that the dependence of the
eigenvalues k,; on the geometry of the reflecting surface
is mostly concentrated in the parameter L. Therefore, if
we neglect the dependence of the coefficients A; on L
(this is possible, because the curvature radius depends
on the shape of the surface S weaker as compared with
the length of surface profile L) and denote a small
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change of the profile length as &L, then the
corresponding shift of eigenvalues 8k,; can be written as

Skn]‘ oL 0 \—2
. = AN /3_
L [1+1,/3 Ay(ky)

—1/3 A4k 4+ L]

It can easily be seen that if the surface profile is a

o
circle, then Ay = 21/3—]”2/3, and Ay <<1 is valid under

the condition n >>1. Consequently, in the “zero”
approximation (in terms of k2]-), for 8k,,; we have

Ok, SL
o (®)

Let us set the surface perturbation of a spherical
droplet as a function &4 f,,(8), where &4 is some
perturbation amplitude (€4 <<ag), 9 is the angle in the
orbit plane of the E,,,; mode (8 € [0, 2x]), and f,,,(8)
is assumed differentiable sufficient number of times
with respect to 8 and, besides, ‘fnm|< 1. Then the
radius of the deformed particle can be written as

1(8) =ag [1 + &g fum(®D], Ex=E4/ap.  (9)

The surface shape set in the form (9) allows us to
use the known equation for the differential of an arc of
an arbitrary curve!7:

ds =2 + ()2,

where
v =dr/ds$. (10)

Substituting Eq. (9) into Eq. (10), we obtain the
following equation for 8L:

2n
8L~ ex [ 1fun(®) + Ea/2{f2,(9) + [£, (912 ds,
0

f'=df/ds.

On the assumption of small shift of the particle
surface &4, we believe that the shape of the deformed
profile is also a circle with some effective radius @ :

oL -
Aef = d()|:1 + o an| =ag [1+ &4 quml. 1)

8L
2TE§A
coefficient. Then the corresponding change of the

Here q,,, = = qgm + &y q},m is the transformation
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diffraction parameter of a new effective sphere with
respect to its initial value x, can be written as (3x /x,) =

= &4 Gum-
Substitution of Eq. (11) into the equation for the

Lorentz profile of the resonance curve (5) gives the
sought equation for the Q-factor of the deformed sphere:

1 1 22 23 S4
=+ CyEl+ 8] + CiEd, 12
0, " 0o 284 384 48a (12)
where

0 42 0 1 2
Cy = Qo [Gum]”s C3= 200 Gum Gum» C4 = Qo [(/r1mz] .

It should be noted that this equation in its form is
similar to the above series (4), which were obtained by
the method of the perturbation theory, and it is indicative
of the fact that the Q-factor of the deformed sphere for
a selected mode can change only toward its decrease.

Let us consider now some particular cases.

1. Spheroidal deformations of a particle
The shape of a deformed particle is specified as
7(8) = ag [1 + 2e cos2(98)]1/2, (13)

where e=1-[1/(1 +& 412, and ay and ap(1 +E4)
are the lengths of the main spheroid axes. This type of
deformations is characteristic of, for example, the
initial phase of ponderomotive oscillations of a droplet,
when it elongates predominantly along the direction of
the radiation-induced force.3

Comparing Egs. (9) and (13), we can find that in
this case

+ 2

§)r ————
fan) (28,4 +1)2

cos2(9),

and the transformation coefficient accurate to the terms
2 .
on the order of £ is equal to

,A+2

h————x1/2,at & 1. 14
i, v /E ARl D

Gnm = 1/
2. Combined (ellipsoidal) deformations
Let us write droplet deformations as
r(9) = ag [1 + E 4 cos(N9)], (15)

where N is an integer number. Unlike the case considered
above, the shape of the deformed surface specified by
Eq. (15) rather closely describes natural deformations
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of liquid particles due to either their fall in the air or

thermal instability of their surface. At N =1 this type

of deformations corresponds to “classical” ellipsoidal

deformations of a droplet that are observed at its free

oscillations at a fundamental (Rayleigh ) frequency.!8
After analogous transformations we obtain

[um(8) = cos(N9),

Gum = 1/4 Ei 1+ N2). (16)

It can be seen that the coefficients Cy and Cg are zero
because of the periodicity of the function f,, with
respect to the angle 9.

Figure 4 depicts the plot of the Q-factor of two
resonance modes TE917 and TEQQ4 as a function of
deformations calculated by Egs. (14) and (16). For a
comparison, this figure also presents the results of
numerical calculations of this parameter from Ref. 11. It
follows from the figure that, under all other conditions
being the same, the spheroidal type of particle
deformations leads to a stronger decrease in the Q-factor
of resonance modes as compared with the combined
ellipsoidal perturbation of the particle surface. The
difference in Q-factor values from the results of Ref. 11,
especially, for low-Q resonances is a consequence of the
used approximation of effective sphere for the Lorentz
profile, which gives the higher values of the coefficient
Cy4 than in the method of small perturbations. However,
in general, the results obtained point to the true tendency
that particle deformations have the strongest effect just
at high-Q resonance modes, whose electromagnetic field
concentrates closer to the surface (smaller values of D,;).

10 ~
10 0
106
&4
102 1 1 I L I I 1
1079 1077 107> 1073 1071

Fig. 4. Q-factors of two WG modes: TES;7 (curves 1, 3, 5) and
TEQZ/1 (curves 2, 4, 6) vs. the amplitude of surface deformations.
Curves 1 and 2 are calculated by Eq. (14); curves 3 and 4 are

calculated by Eq. (16); curves 5 and 6 are plotted according to
the data of Ref. 11.

Equations (14) and (16) were obtained only for
the particular case of the principal particle cross section,
(©,,, = 0) corresponding to the WG modes with the
azimuth index m =+ n. As was noted above, the
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electromagnetic field of the modes with m=#n is
dominantly localized in the planes inclined by the angle
0,m = 0 relative to the principal cross section. Therefore,
for them Egs. (14) and (16) should be corrected.

For this purpose, we can use known equations for
transformation of the spatial coordinates.!” The new
coordinate system is connected with the orbit of some
natural mode. In fact, it is the initial coordinate system,
whose axes a1’ and z' are turned around the axis y by
the angle 9,,, (see Fig. 1). For such a transformation,
the following coordinate equations are valid:

sin @' cos @’ = sin B cos @ cos 0, — cos O sin 6,,,,,
sin 6’ sin ¢’ = sin O sin o,
cos 0’ = sin O cos ¢ sin B, + cos 6 cos 0,,,.

The prime sign here stands for the spherical angles in
the new coordinate system. With the allowance made
for an obvious condition that ¢’ = n,/2, these equations
transform into the equation relating the polar angles 6
and 0"

cos 0 = cos 0’ cos 0,,,.
Then we finally obtain
Gum = 1/2 (m?/n?)

for spheroidal deformations, and

Gum = 1/2 Eﬁ (m? /n?)

for combined deformations (N = 1).

These equations show that degeneration by the
azimuth index (in the meaning of natural frequencies) is
lifted in the presence of deformations of a spherical
particle, and the absence of changes in the Q-factor of
the resonance modes with m = 0 is a consequence of the
absence of surface deformations at 0,,, = n,/2 [Eqs. (13)
and (15)].

Thus, surface deformation of particles causes a kind
of selection of the excited WG modes, that is of primary
importance for, for example, support of stimulated
scattering processes. It is obvious that in an ideal sphere
the competition of resonance modes is always won by
the highest-Q electromagnetic oscillations having the
lowest order. But the situation drastically changes, if the
surface of a liquid particle is deformed. In this case, the
modes having the lower Q-factor, but higher stability
to deformations of the particle surface come over.
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