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The relations between the distribution of the refraction angle fluctuations over statistically
nonuniform phase screen and fluctuations of light intensity averaged over the receiver’s aperture in the
multipath area are obtained. The conditions of applicability of these relations are analyzed. Based on
these conditions, numerical simulation of stellar scintillations observed through the Earth's atmosphere
from space is carried out. A good agreement is obtained between the statistical characteristics of

simulated and actual stellar scintillations.

In the first part of this paper,! equations have been
derived for calculation of scintillation characteristics
averaged over an ensemble of realizations and over the
receiver’s aperture, and conditions have been formulated
for their applicability. In this part, T present some
results of numerical simulation of scintillations caused
by stratified atmospheric inhomogeneities, which can be
modeled by a one-dimensional phase screen.

Define the mean intensity as an average over a
rectangular receiving aperture with the halfwidths R,
along the vertical axis and R, along the horizontal axis

Rz RU
IS(Z,RZ,Ry): ! J. J.I(z-s-z',y+y')dz'dy'. 1)
zRg/ R -

Yy

Unlike similar definition in Ref. 1, there is no
averaging over realizations here and Ig is a fluctuating
characteristic.

From analysis in Ref. 1 it follows that in the case
that the aperture dimensions R, and R, are much larger
than the characteristic spatial dimensions of the near-
caustic zone [, the average intensity of light behind the
phase screen, a plane wave of the unit intensity is
incident on, can be calculated as
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where n and ¢ are the coordinates of points on the
phase screen; 0(x) is the unit stepwise function;
Ta(n, ©) =aS(, ©)/on, v:(n, ©) = aS(n, §) /3¢ are the
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components of the refraction angles; S(n, {) is the
eikonal distribution over the phase screen; L is the
distance from the screen to the observation plane.

In this paper, we consider the case of a one-
dimensional phase screen, the distribution of the
refraction angle over which is specified as a function of
one variable n: y(n) = y,(n) = 85(n) /on. With the wish
to apply the results to interpretation of scintillation
measurements from space, let us choose the coordinate
axis as a vertical passing through the perigee point of
the light beam mean for the measurement range with
coordinates measured from the Earth’s surface. In this
case v, = 0 and [, is determined as follows:
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and Eq. (2), after integration over the coordinate &,
takes the form

0 2
15@=—— {0 1-(L(”)‘ZJ dn.  ©)
2R, R,

The conditions for applicability of the equation
similar to Eq. (3) were found in Ref. 1 based on the
estimated differences of the integrand function from the
stepwise 9-function with the allowance made for cubic
term in the series expansion of the eikonal difference at
two points. To illustrate the efficiency of this equation,
here we present a comparison of the exact and
approximate solutions of the problem of light diffraction
behind a Gaussian phase screen with the distribution
¢(2) = kS(z) = —30m exp[— (2/10)2] and [p=5m at
L = 3000 km. The wavenumber %k in calculations is
taken to be equal to 107m™!. A screen with such
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parameters makes a complex diffraction pattern in the
observation plane. The central part of this pattern is
shown in Fig. 1a. It was calculated by use of fast
Fourier transform method.
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Fig. 1. Intensity distribution in the multipath region at
diffraction of a plane wave on a screen with a Gaussian phase
perturbation. Non-averaged  distribution (@), averaged
distribution (b) at the aperture halfwidth of 0.5 (7) and
2m (2); the exact solution (solid curves) and approximate
solution (dashed curves).

Figure 1b shows the distributions of the average
intensities calculated by a moving average over the
apertures with the halfwidths of 0.5 and 2 m. The solid
curves in Fig. 1b show the results of averaging of the
exact intensity distributions, and dashed ones are the
intensity distributions calculated by Eq.(3). The
maximum value of the scale [,(z) at the given distance
L and phase screen parameters is equal to 0.45 m. It
can be seen from Fig. 1 that already at R, = 0.5 m the
difference between the approximate and exact
dependences is small, and at R, = 2 m the approximate
and exact dependences coincide within the accuracy of
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the graphical presentation. In this particular example
this means that the condition R, > 4 [, must be fulfilled
accurate to about 2%.

This example shows that Eq. (3) is applicable to
calculations in the case that the size of inhomogeneities
is relatively small, about several meters for the geometry
of observations from orbiting stations, if the dimensions
of the effective averaging aperture are smaller than
several meters. This allows simple modeling of
scintillations behind the atmosphere with large-scale
stratified inhomogeneities arising at internal wave fall.2:3
The minimum scales of such inhomogeneities do not
exceed 10 m. Some results of statistical modeling of
scintillations behind a one-dimensional phase screen are
given below.

As is seen from Eq. (2), the distribution of the
aperture-averaged intensity of the light field behind the
phase screen is independent of the wavenumber being
completely determined by the distribution of the
refraction angle on the screen.

In this paper, Eq. (3) was used to calculate the
average intensity behind the phase screen with the
refraction angle distribution y(z) of the following form:

y(2) = vo(2) [1 + dy g(2)], (4)

where yy(z) is the mean height distribution of the
refraction angle; dy is the square root of the variance of
relative fluctuations of the refraction angle; g(z) is the
function having normal distribution, zero mean, and
unit variance. The spatial spectrum of this function was
specified in the following form:

Fg(p)= exp [=(plp)?1, (5)
1+ (pLy)?
where the coefficient C was chosen from the
normalization
<g2> = J.Fg(p)dp =1. (6)

The inertial part of the spectrum (5) corresponds to
the spectrum of eikonal fluctuations on the screen
Fs(p) ~1/p%, that is characteristic of turbulence
caused by the internal wave fall.2 The value of dy in
calculations was taken equal to 0.02, and the internal [,
and external L, scales of turbulence were taken equal
to 50 and 1000 m. Realizations of the distribution of
the refraction angle were modeled by the method of
white noise filtration.4

The exponential distribution

70 (2)=7(z9) exp(z0 ‘ZJ
Hy
with zp=30km, Hy=6.25km, and Sy=Ly(z) =
= 1.124 km was taken as the mean one.
To take into account the effect of extinction of
light due to molecular scattering, which is important
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for interpretation of actual observations, intensity
realizations calculated by Eq. (3) as functions of height
of the ray perigee n at the heights lower than n; = 40 km
were multiplied by the transmission function

Fext(m) = expldy (n = ny) — 4y (n=np? +

+ Az (n =’

with the parameters Aq=0.02, A, =0.0003, and
Az = 0.00008.

Figure 2 exemplifies realization of the scintillation
intensity I¢ at the receiver with the aperture halfwidth
R, =2 m as a function of the perigee height, as well as
0.5-km long parts of this realization at different perigee
heights.
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Fig. 2. Simulated realization of the scintillation intensity Ig
and its fragments in the regions of weak fluctuations (a),
focusing (b), and multipathing (c).

If we compare the simulated scintillations with the
measured ones, that is, Fig. 2 of this paper with Fig. 3
of Ref. 2 and Fig. 2 with Figs. 4 and 5 of Ref. 3, then
we can see a good qualitative and quantitative agreement.
Thus, in the focusing region (at the ray perigee heights
of about 29 km in the field experiment and about 27 km
in the numerical one), a characteristic pattern is the
presence of spikes about 10 to 20-m wide separated
roughly by 300 to 400 m. The multipath zone is
characterized by the signal fadeaway down to a series
of pulses separated by deep fade intervals. The effective
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width of the pulses increases, as the ray perigee height
decreases. The difference between the actual and
simulated realizations consists in the fact that in the
actual ones there is high-frequency modulation of
multiplicative noise. This modulation is likely caused
by the effect of small-scale Kolmogorov turbulence,
which is ignored in numerical simulations.

Equations (2) and, especially, (3) allow one to
easily conduct statistical simulation and studying the
properties of strong fluctuations in both statistically
homogeneous and inhomogeneous media based, as well
as checking theoretical conclusions drawn from
application of different asymptotic methods.

Below we consider, as a case study, the issue of
applicability of perturbation methods to calculation of
the variance of intensity fluctuations averaged over the
aperture.

In Ref. 5 it was shown, in particular, that to calculate
the low-frequency part of the scintillation spectrum behind
a statistically uniform, single-scale random screen,
equations of the method of smooth perturbations (MSP)
are applicable. According to asymptotic estimates,” these
equations must be fulfilled for the spectrum at the

wavenumbers
12
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where [ is the scale of phase screen inhomogeneities;
<dS*> is the variance of eikonal fluctuations on the

screen. At the distribution (4), <dS*> /P> ~ [v0(2) dy]2
and the wavenumber
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The characteristic Ry inverse to g4 is equal, by the
order of magnitude, to the square root of the variance of
ray displacements in the observation plane. The intensity
fluctuations averaged over the aperture are determined

by the spectral components with g < R;1, therefore it
can be expected that the MSP equations (in the region
of strong not averaged fluctuations) can be fulfilled not
only in the low-frequency part of the spectrum, but also
for the variance of intensity fluctuations if ¢1R, > Cj.
Here C; is on the order of unity. Numerical experiment
allows one to refine the applicability of this assumption.

Figure 3 depicts the calculated results on the
height dependence of the variance of average intensity
fluctuations calculated using 200 realizations obtained
at the same values of the phase screen parameters as
those, at which one of the realizations shown in Fig. 2
was simulated. In this case R is about 30 m at the ray
perigee height of 30 km. The variance of intensity
fluctuations Bo(n) as calculated by equations of the
first approximation of the perturbation method is
shown as well.
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Fig. 3. Index of average scintillations B as a function of the ray
perigee height at the halfwidth of the averaging aperture equal
to 1 (1), 10 (2), 20 (3), 100 (4), 200 (5), and 400 m (6);
results of numerical simulation of strong scintillations with the
following averaging (squares), calculation by equations of the
perturbation method (dashed lines).

These equations were derived in the following way.
Let us write the height dependence of the refraction
angle in the following form:

y(n) = yo(n) + y1(n),

where 71(n) = y9(n) dy g(n) is the fluctuating part.

Assume that in the absence of fluctuations light
propagates in the single-path mode and fluctuations of
the refraction angle are small ( ‘}q(n) | < ‘yO(n) ). Let
Mo, N1, and 1y be the roots of the equations:

Nno T Lyo(ng) =z, ny + Ly(ny) =z — R,,
ny + Ly(ny) =z + R,.

If the fluctuations y; are small, the solutions of the
last two equations are as follows:

z

Ny =MNo -OR, [1+R£Y1(T10 _QRZ):| ’

L
N2 =ng +OR, {1—R—Y1(no +QR2)} ;

z

where

0(2) = Q [n(2)] = [1 + Ldyy(ng) /dng] ™!

is the coefficient of the refraction weakening.

For the aperture-average intensity and its relative
fluctuations we have, from Eq. (3), the following
equations:
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Having assumed that the spatial scale of the
fluctuating part of the refraction angle is much smaller
than the spatial scale of the regular part, the following
equation follows from Eq. (9) for the squared variance of
the relative intensity fluctuations:

412
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From the data shown in Fig. 3, it can be concluded
that, actually, to calculate the variance of intensity
fluctuations with averaging over a large aperture in both
the focusing and random multipathing regions, equations
of the first approximation of the perturbation method
(corresponding to the equations of the method of smooth
perturbations for field calculation) can be applied.

If the average intensity fluctuations are weak so
that Eq. (10) is applicable to their calculation, then at
the normal distribution of refraction angle fluctuations
they also must obey normal distribution. The validity of
this statement was checked using a statistically uniform
screen as an example. (In the case of statistically
nonuniform screen, it is difficult to conduct such a
simulation because of the need to simulate a large number
of realizations for statistically confident conclusions.)

Figure 4 depicts the calculated probability density of
the average intensity distribution in the case of small, as
compared with Ry, and large averaging apertures. Four
hundreds of screen realizations with the parameters yy(n) =
=const, Ry = Lyydy=100m, and the spectrum (5) with
lp=50m and Ly=500m were simulated. Crosses in
Fig. 4 stand for the results of numerical simulation at the
aperture halfwidth R, = 0.5 m, and circles are for those
at R, =200 m. The variances of average fluctuations were
By =1.25at R,=0.5m and By =0.256 at R, = 200 m.

It can be seen from Fig. 4 that at large averaging
aperture the probability distribution of average
intensity fluctuations is more similar to the normal than
to the lognormal one. At small averaging apertures, the
probability distribution at I¢> 0.7 is similar to the
lognormal one, and if I < 0.7 it differs significantly
from the lognormal distribution and even more from the
normal one. These results mostly agree with the results
of analysis of scintillations in the actual experiment.3
There is some difference in the probability distributions
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of high spikes and deep fades. Their probability in the
actual experiment was higher than that in the numerical
one. This difference is likely caused by the presence of
instrumental noise in measurements that is significant
in the fade zone and by the lack of statistical confidence
in high spikes. It should be noted that in the numerical
experiment, as model ones, the parameters (Ry, Iy, L,
dy) were varied in wide limits and we observed no
probability distributions close to the exponential
distribution, which is widely used for calculation of
fluctuation characteristics in the saturation zone. It was
already noticed earlier that the exponential distribution
was not observed in field measurements as well.6
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Fig. 4. Probability density distribution p(Ig) of the intensity
fluctuations of light averaged over the receiver aperture in the
multipath region behind a statistically uniform screen at the
averaging amplitude halfwidth R, =0.5 (/) and 200 m (2);
numerical experiment (crosses and circles), lognormal
distribution (dashed line), and normal distribution with the
parameters By and By (solid line).

The investigations carried out have proven the
applicability of equations of the perturbation method to
calculation of the characteristics of scintillations
measured with a large-aperture receiver. This conclusion
may turn out useful for practical applications when
developing methods for description of scintillations and
in spectroscopic methods of determination of gaseous
constituents of the atmosphere from measurements of
stellar radiation from space platforms.” The characteristic
size of the averaging aperture in this case is the height
interval, the receiver travels during the time between
successive measurements. At the measurement rate
equal to several hertzs, depending on the orbit position
relative to the direction toward the star, the averaging
interval can be from 100 to 1000 m.

However, it should be kept in mind that Eq. (10)
was obtained assuming the regular wave structure (in
the absence of fluctuations) to be single-path in the
observations plane. In the models of regular refraction
allowing for multipathing mode, as was shown in
Ref. 1, even the average height distribution of the light
intensity may have a complex structure. The issue of
applicability of the perturbation method to calculation
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of the characteristics of fluctuations calls for a separate
consideration.

Conclusions

Simple equations have been obtained that relate
the distribution of refraction angle fluctuations over a
nonuniform phase screen to the distribution of the light
intensity averaged over the receiver aperture in the
multipath region. Based on these equations, numerical
simulation of the process of stellar scintillation at
observation through the Earth’s atmosphere from space
has been carried out.

Using the model of exponential regular atmosphere
as a case study, the dependence of the variance of
average scintillations on the perigee height of a light
ray and on the size of the averaging aperture has been
studied. The probability distributions of the intensity of
scintillations have been calculated.

It has been confirmed that the large-scale portion
of the spectrum of strong fluctuations is described by
the equations of the perturbation method. It has been
noticed that in the region of strong fluctuations the
statistics of intensity spikes is close to the lognormal
one. Numerical simulation has demonstrated the
invalidity of the assumption widely used in the
asymptotic theory that if fluctuations are close to
saturation, then their distribution is close to the
exponential one.
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