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The relations between the Padé representations of the energies of the vibrational-
rotational states of diatomic molecules on the one hand and the potential constants on 
the other are established. The advantage of this method for analyzing and extrapolat-
ing high excitation frequencies of vibrational-translational transitions over the tradi-
tional approach is demonstrated for the example of the molecule HBr. Its anharmonic 
constants are calculated by solving the inverse problem. 

 
 

There now exist many works (see. for example. 
Refs. 1–8) on the construction of both fractional 
and Padé representations in perturbation theory or 
in the variational approach. In these works the ad-
vantages of this approach are pointed out in exam-
ples of calculations of the energies of the states of 
the simplest anharmonic oscillators and electrons in 
molecules. The power-series approximation is made 
in the small parameter . This approximation is de-
veloped explicitly in low orders.4–8 Our interest in 
investigations of this type is dictated by several 
other presuppositions, for example, the striving to 
achieve the best description and predictions of the 
vibrational-rotational energies of the H2O molecule, 
where the Padé approximants would be constructed 
for the most slowly converging Taylor series in 
power of the rotational operators 2.zJ 9,10 The analy-
ses were performed at the phenomenological level by 
varying the spectroscopic parameters. At the same 
time, the physical meaning of Padé formations, i.e., 
the possibility of deriving them from the potential 
function of the molecule, remained unresolved. In 
this paper we take the first practical steps in this 
direction for the example of the simplest diatomic 
molecules on the basis of the perturbation theory. A 
detailed mathematical description of Padé approxi-
mants can be found in Ref. 11. 
 

A VERSION OF THE PERTURBATION 
THEORY 

 
There exists a quite general approach12 that uni-

fies the two versions of the perturbation theory — 
the Rayleigh–Schröedinger and the Brillouin–
Wigner — by introducing an undetermined operator 
 in the iteration equation. For example, after the 
ith iteration the wave function has the form 
 

 (1) 
 
where H(0) and H are, respectively, the zeroth-order 
Hamiltonian and the perturbation potential. The 
orthogonal projection operator Qs is such that Ps + 
Qs = I, where I is the unit operator and P is the 
orthogonal projection on a selected subspace. In the 
case of the isolated states ,s s

s P   where s  

are the eigenfunctions of the zeroth-order approxima-
tion. If in Eq. (1)  is replaced by the energy of the 
zeroth-order approximation E(0) or its exact value E, 
then we obtain the Rayleigh–Schröedinger or the 
Brillouin–Wigner version. 

Now, let i = 1 in Eq. (1) and assume that the 

initial wave function (0)

s
  for the first iteration has 

the form 
 

 (2) 
 

The expression (2) is the zeroth-order approximation 
of the iteration equation (1), though in itself it is 
the wave function of the Rayleigh-Schröedinger ver-
sion in the ith iteration. After substituting Eq. (2) 
into Eq, (1) we obtain an expression for the energy 
shift Ås (Ref. 12) 
 

 
 

 (3) 
 



V.F. Golovko and V.G. Tyuterev Vol. 3,  No. 6 /June  1990/ Atmos. Oceanic Opt. 563 
 

The operator  in Eq. (3) commutes with H(0). Ra-
tional, with respect to the quantum numbers, ratios 
can be introduced in the expressions for Es in 
Eq. (3) by choosing a special from of the operator : 
 

 
 
Here it is assumed that a unit operator I stands next 
to the scalar quantities. The specific Padé form de-
pends on the quantities bs and the values of l in 
Eqs. (2) and (3). The expression (3), determining 
the combined version of the perturbation theory, is 
the basic expression used to construct Padé forms. 
 

REPRESENTATION IN VIBRATIONAL 
QUANTUM NUMBERS 

 
The vibrational energy of a one-dimensional an-

harmonic oscillator is traditionally written in terms 
of the spectroscopic parameters Yr in powers of the 
quantity h = (v + 1/2), where r is the power. To 
introduce rational ratios it is necessary to introduce 
into the denominators the expression (3) the re-
quired dependence on the quantum numbers v with 
the help of Eq. (4). In Eq. (3), however, there exist 
terms without denominators. For this reason, it can 
be assumed at the outset that 
 

 (5) 
 
where [n/m] is the Padé form,11 which depends on 
the spectroscopic parameters Zr. The values of n and 
m are the maximum powers of the polynomials in 
the numerator and denominator, respectively. In the 
case of Taylor series m = 0 and Yr = Xr + Zr. For 
m > 0, however, the last relation becomes meaning-
less. The parameters Xr follow from the first term on 
the right side of the relation (3). 

It is well known that the values of Yr are related 
with the molecular constants , , and 1, which ap-
pear in the Hamiltonian of a diatomic molecule 
 

 
 
where the perturbation potential has the form 
 

 
 
In this section J = 0. 

The most complete collection of formulas for Yr 
is given in Refs. 13 and 14. Every quantity Yr is a 
sum of ( )

rY   in different orders  of the perturbation 
theory, so that with accuracy up to tenth order the 
vibrational energy can be written as 
 

 (6) 
 

where a1 = 2 + 4i, dr = (10 – 2(r – 1)–:–4, 
f1 = 2(r – 1) + 4i. Since the expression (6) is in the 
form of a Taylor series, i.e., a particular case of the 
formula (5), when m = 0, in Eq. (6) the relation 

( ) ( ) ( )
r r rY X Z     is satisfied for every ( ).rY   It is 

obvious that (0)
0Y  is the electronic energy; (0)

1 ,Y    

where  is the harmonic frequency of the vibrations; 
and, (0)

1 0.Z   The specific Padé forms [n/m] are 

constructed from the quantities ( ).rZ   Thus  the com-

bined representation of the energy Ev in terms of the 
Taylor and Padé forms (5) immediately gives a rela-
tion between Ev and potential constants of the mole-
cules, since the relation between ( )

rZ   and the poten-
tial function is known.13,14 It remains only to prove 
that the version (3) can be used consistently to con-
struct the Padé forms (5). 
 

SPECIFIC PADE FORMS 
 

We start from the fact that the Padé relations 
approximate the Taylor series (6) in powers of h. 

1. In the zeroth-order perturbation theory 
(N = 0) the only possible from is [1/0], identical to 
the zeroth-order harmonic approximation. 

2. Let N = 2. The Danham form [2/0] is obvi-
ous. Like in the zeroth order, the form [1/1] is im-
possible. 

3. N = 4. There is the Danham form [3/0] and 
the simplest of the possible Padé approximants [2/1] 
appears. It should approximate the series (6) to or-
der O(h4) as follows: 
 

 
 

or according to the relation 
 

 
 

 (7) 
 

From the form of the numerator in Eq. (7) we ob-
tain the coefficient bh = bv = bs in accordance with 
the expression (4) as 
 

 (8) 
 

Performing the required operations of the per-
turbation theory up to fourth order infinitesimals 
(N = 4), according to the expression (3) with l = 3, 
we obtain the corrections to the energy Eh, follow-
ing from the Padé form [2/1], in the form 
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 (9) 
 
The numerator required for the Padé form [2/1] (7) 
can be constructed using the sixth-order perturbation 
theory, i.e., in Eq. (3) we can set l = 5. Then new 
terms are added to the numerator in Eq. (9), and the 
quantity Dh will have the form 
 

 (10) 
 

Substituting Eq. (10) into Eq. (9) we obtain 
Eh = [2/1] + R(6), where the remainder R(6) con-
sists of terms from sixth-order perturbation theory 
 

 
 

 
 

which is what we were required to prove. 
4. An analogous method for constructing the 

form [3/1], when the perturbation theory (3) is 
studied in eighth order but the theoretical Danham 
spectroscopic parameters of order no higher than 
sixth are employed. It is difficult to obtain the ap-
proximant [2/2] because the parameter bh is more 
complicated. 

5. The formulas derived in Refs. 13 and 14 
make it possible to obtain a relationship between the 
energy and the potential function of the molecule in 
terms of the Padé form [n/m], if the relations 
3  n + m  6 and n  m are satisfied. On the basis 
of the approach studied above constructions for 
n < m are also possible, but only if n  2. 
 

ANALYSIS OF INFRARED ABSORPTION 
SPECTRA 

 

We introduce the J-dependent quantities 
( )( )rX J  and ( )( )rZ J  according to the expressions 

 

 
 

The summation limit Jmax is determined by the order 
N of the perturbation theory employed. Correspond-
ingly, the energies of the vibrational-rotational 
states cam be represented in the form 
 

 (11) 
 

The approximant [n/m]J is a function of Zr(J). The 
proof of the formula (11) is more complicated than 
that of Eq. (5), but the fundamental scheme of the 
proof is the same. 
 

TABLE I. 
 

Comparison of two sets of molecular constants 
calculated by analyzing the spectra of the molecule 

H81Br using two models. The measurement units 
are [] = cm–1, [] = 10–1, and [ 1] = 10–1. 

 

 
 

TABLE II. 
 

The computed values of the spectroscopic 
parameters of the molecule H81Br in cm–1. The 

Padé model [4/0] + [3/1] was used in analyzing 
the (0 – v) band, where v = 1, , 7. 

 

 
 

The frequencies of the vibrational-rotational tran-
sitions15 of seven vibrational bands of the molecule 
H81Br were analyzed using the formula (11). The val-
ues of the computed molecular constants are compared 
in Table I using the form [3/1] (11) with the results 
of our calculation using the Danham formulas, i.e., 
[n/m] in (11) is expressed as [4/0]. The quantities  
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inverse to 2  10–7 1 in cm–1 for each ith frequency  
of the two R and P-branches were chosen as the 
weights. Judging from the sum of the squared devia-
tions the quality of the analysis of the frequencies is 
at least three times better when the Padé forms are 
employed. The values of the constants of the high 
anharmonicity for the two calculations differ appre-
ciably from one another. Table II gives the values of 
the spectroscopic constants Xr,j and Zr,j. Some values  

of Xr,j are equal to zero, since for given indices r and 
j there are no contributions from terms without re-
solvents in the perturbation series (3). Just like for 
the water molecule,10 the advantage of the Padé 
models was noticeable when extrapolating the fre-
quencies. In Table III the deviation of their values 
from the experimental values is mainly an order of 
magnitude better than in the case of the Danham 
representation. 
 

 
TABLE III. 

 
Comparison of the errors in the extrapolation of  = exp – calc , in cm–1 for the band (0 – v = 7), 
calculated based on force fields obtained in two models in the analysts of the first six bands of the 

molecule HBr. 
 

 
 

In conclusion we note that the possibility of de-
riving rational expressions for the vibrational-
rotational energies or effective Hamiltonians by the 
methods of perturbation theory has been discussed on 
a formal level in the literature (see, for example. 
Refs. 16 and 17). This possibility in itself does not 
guarantee that the convergence of the expansions or 
the accuracy of the calculations will be improved, 
since the class of rational expressions is very large. To 
evaluate the prospects of each version of the calcula-
tions it is necessary to perform a quantitative analysis 
that includes reconstruction of the parameters used in 
inverse problems and determined uniquely from the 
experimental data. In this paper a nonpolynomial 
mathematical model (11) was constructed and investi-
gated quantitatively. This model is a representation of 
the Padé type, but it is not identical to it, since the 
relations between it and the Taylor constants are 
somewhat different from the Jacobi relations.11 It 
makes it possible to increase the accuracy of the de-
scription and the prediction of the spectra of diatomic 
molecules based on the calculation of the potential 
function of the molecule. The accuracy of the extrapo-
lation for high overtones of HBr is close to the ex-
perimental accuracy, and this indicates that in the 
future such models could replace the standard Danham 
model for analyzing the energies of highly excited vi-
brational states, especially since they are at least as 
versatile as the Danham model and the well-known 

relations between the spectroscopic constants and the 
force field can be employed.  
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